Starting a new forum topic to organize the second workshop. Similar format to the first workshop.
When: Wednesday 15 April 2020 for 2 hours starting as follows (please double check your entry):
Local time | UTC offset | Location | Comment |
---|---|---|---|
1500 UTC | +0000 | — | |
0500 HST | −1000 | Hawaii | |
0800 PDT | −0800 | California, Vancouver | |
1100 EDT | −0500 | New York | |
1600 BST | +0100 | London | |
1600 IST | +0100 | Dublin | Irish Standard Time |
1700 CEST | +0200 | Berlin, Paris | |
1700 SAST | +0200 | Johannesburg | |
2030 IST | +0530 | New Delhi | Indian Standard Time |
2300 CST | +0800 | Beijing | |
2300 SGT | +0800 | Singapore | |
0000 JST | +0900 | Tokyo | |
0100 AEST | +1000 | Sydney | |
0300 NZST | +1200 | Wellington |
What: 10 slots for 6 minute talks + 4 minutes questions/comments. Topic is broadly “open models and data for energy modelling”.
Who: Anyone can join to listen (up to 300 participants). We’re limiting it to 10 presentation slots to keep it a reasonable length.
How to suggest a talk: Use the edit button (bottom right) to add your talk to the list.
How to connect: Use Zoom (works for Windozzz, Mac, GNU/Linux, please download, install and test before the workshop ), apologies that it’s not free software, but it works very well for group calls. Technical zoom hosting will be provided by the Energy and Climate Research Network (ECRN) at Dublin City University, with support from the Science Foundation Ireland (SFI) Insight Centre for Data Analytics. Private page with meeting details - unfortunately due to recent incidents of zoom-bombing we have decided to make the link private - you will need to register as a forum participant to get the link and to attend the meeting.
Talk format: Zoom allows you to share your screen with other participants, so you can share your talk slides. We’d appreciate it if you made the slides available beforehand with an open licence like Creative Commons Attribution (CC BY 4.0) .
Schedule (UTC, list of talks below)
1500 Start
1500 Introductions
1510 Talks start
1650 Talks finish
1650 Feedback/Open Forum
1700 Official finish
1730 Final finish
Talks:
Talks listed in order of presentation.
-
Taco Niet. Reviewing combined modelling Approaches for meeting the UN Sustainable Development Goals The integration of different models through hard- and soft-linking has both advantages and disadvantages but, to date, no review of the strengths and weaknesses of combined models has been published in the literature. SFU’s School of Sustainable Energy Engineering has recently received a grant to review the literature on these combined modelling approaches. The project aims to bring together modellers to discuss the challenges, strengths and weaknesses of combined models and to publish a review article of the findings that will provide guidance to modellers when considering combined modeling approaches.
-
Daniel Huppmann A common nomenclature for assessing low-carbon transition pathways in Europe The Horizon 2020 project openENTRANCE aims to develop an integrated modelling platform for assessing low-carbon transition pathways in Europe - but integrating multiple frameworks across spatial scales and sectoral dimensions requires a common understanding of terms and definitions. This talk will present ongoing efforts to develop such a nomenclature in an open & transparent manner. Check out the GitHub repository for details. Download slides (1.6 MB) for this talk.
-
Zoltan Nagy or Jose Vazquez-Canteli CityLearn: An OpenAI Gym Environment for MultiAgent Reinforcement Learning and Demand Response In brief, CityLearn deals with controlling heat pump operation and battery/thermal storage charge/discharge using RL in multiple buildings (centralized & decetralized) to study building-grid interaction. We have abstracted out the building side so one can focus on algorithm development only, and hence develop benchmarks and comparisons, in particular for multi agent systems. Check out the GitHub Repository for details.
-
Stefano Moret & Gauthier Limpens. EnergyScope: a novel open-source model for regional energy systems. EnergyScope optimises the investment and operating strategy of a multi-sector multi-vector energy system (including electricity, heating and mobility) for a target year. The linear programming model has an hourly resolution (using typical days) which makes it suitable for the integration of intermittent renewables, and its concise mathematical formulation and computational efficiency are appropriate for quick scenario assessments as well as uncertainty studies. Check out the GitHub Repository and the paper for details. Our slides are available here.
-
Oleg Lugovoy. USENSYS development & Open Decarbonization updates.
-
United States Energy System (USENSYS) is capacity expansion model with primary focus on renewables and energy transition. USENSYS is an open source capacity expansion model, based on energyRt package for R. The current state of the model covers electric power sector and has 49 regions (48 lower states and Washington DC), and two time-resolution versions:
– renewables balancing version with 1 year and 8760 hours, 49 regions;
– electric power system transition version with 1-300 sub-annual slices and 50-100 years of horizon. -
Open Decarbonization – an open energy modeling initiative with the purpose to develop a knowledge platform of sharable tools for reproducible decarbonization analyses, accelerate dissemination and implementation of the tools, and develop low carbon energy future scenarios available for free public use and open discussion.
The project aims to connect modelers/researchers who has developed models and decarbonization scenarios with modelers/researchers who want to recalibrate the models for another country/region/sector, reproduce and build on the analysis, contribute low decarbonization scenarios to the public domain.
-
United States Energy System (USENSYS) is capacity expansion model with primary focus on renewables and energy transition. USENSYS is an open source capacity expansion model, based on energyRt package for R. The current state of the model covers electric power sector and has 49 regions (48 lower states and Washington DC), and two time-resolution versions:
-
Diederik Coppitters Uncertainty quantification and robust design optimization framework for hybrid renewable energy systems. The framework aims for computationally-efficient robust design optimization of hybrid renewable energy systems, including the quantification of uncertainty related to lack of data (epistemic uncertainty) and uncertainty related to natural variation (aleatory uncertainty). The framework provides designs with optimized average techno-economic performance, as well as designs which are least-sensitive to real-world uncertainties. Additionally, the dominating stochastic input parameters on the performance variation are provided through sensitivity indices, while the effect of epistemic uncertainty on these sensitivity indices indicates their confidence level.
-
Kamaria Kuling Comparison of Two Different Equations for Modelling Energy Storage with OSeMOSYS A comparison of different methods of modelling energy storage that have been used in the open source capacity expansion modelling system OSeMOSYS. Variable renewable energy sources (VREs) such as wind and solar provide a low carbon alternative to meet our energy demands, but one drawback of such technologies is their dependence on weather cycles. Energy storage is one solution to allow energy demands to be met while using VREs. Consequently, it is paramount when making decisions regarding future energy use and incorporating more VREs into our energy infrastructure to be able to include storage in an energy model, and to have trustworthy and reliable methods to do so. This presentation will compare two storage equations formulated by Welsh et al. and Niet for OSeMOSYS and their effect on model outputs and performance.
-
Leonard Göke. anyMOD - A framework for energy system modelling with high levels of renewables and sectoral integration. anyMOD.jl provides a framework to generate large-scale energy system models, that account for close interdependencies between sectors and the variable nature of wind and solar. Drawing on basic concepts of graph theory, this is achieved by two novel features. Frist, the level of temporal and spatial detail can be varied by energy carrier. Second, context-dependent substitution of energy carriers can be modelled. Check out the repository here.
-
Mihir Desu. Decarbonizing the Energy System: The impact and cost of using fragmented grid planning models to guide investment decisions. Converting opaque and black box capacity expansion and production cost models used for resource investment planning decisions into open and transparent tools. Please find my slides here.
-
Adriaan Hilbers. Renewable test case power system models
We discuss a set of simple renewable power system models for benchmarking exercises for time series and optimisation methods. In many fields, standard benchmarks exist; notable examples are MNIST or CIFAR in Computer Vision and the Lorenz 63 system in Dynamical Systems. Test models used in power system research tend to differ per investigation, with each paper using a different (often not open-source) model. This repository provides a few simple test models to fill this gap. The models can be run “off-the-shelf”, containing pre-determined topologies, technologies and time series data. All that needs to be specified is the subset of time series data to use and a number of switches (e.g. integer or ramping constraints, whether to allow unmet demand) that ensure the model can contain most features seen in more complicated systems. These models are not modelling frameworks like OseMOSYS or Calliope (which can be used to create arbitrary power system models, but are not models themselves). The models are built and can run in Python. Documentation and examples can be found in the Github repository.
Format for each talk
- The speaker will be moderated into the meeting by the timekeeper
- The speaker can share their slides or screen by hovering over the main screen Zoom and clicking “Share” and choosing what they would like to share. Please remember to unmute your microphone and introduce yourself briefly.
- They can speak for 6 minutes. All other participants will be muted by the moderators during this time.
- After 5 minutes they will received a “1 minute warning” on audio from the timekeeper
- After 6 minutes they will be asked to stop talking by the timekeeper
- If they are still speaking after 6.5 minutes, the timekeeper will mute them (sorry).
- To ask questions to the speaker, write your question in the public “Chat”.
- The question moderator will group similar questions and ask the questioner to put their question over audio to the speaker.
- After 9.5 minutes the timekeeper will ask everyone to start wrapping up and prepare for the next speaker.
- If you have further questions for the speaker, please contact them privately or use the open forum at the end of the session.
Timekeepers/Moderators
@bmcm will do Zoom hosting duties (managing who’s (un)muted etc).
@dnock (Destenie Nock), @johannes.hampp and @tniet (Taco Niet) will co-host, time keep & moderate the questions after each talk:
- Talks 1 - 4: @tniet as timekeeper, @dnock as question moderator.
- Talks 5 - 7: @johannes.hampp as timekeeper, @tniet as question moderator.
- Talks 8 - 10: @dnock as timekeeper, @johannes.hampp as question moderator.
Recording
We’d like to record the entire session and, for people who give their consent, make the recordings available after the session under a Creative Commons Attribution (CC BY 4.0) to those who were not able to make the meeting. We will try to make a registration page when you log into the meeting where you can give your consent or not. We will not publish anything without the consent of those being recorded. You may withdraw your consent afterwards as well. We will respect the wishes of anyone who asks to delete the recording of them during times when they were talking. We remind all users that the meeting was advertised on a public forum and we cannot stop any participants recording the meeting with screen capture. Please contact @robbie.morrison with questions about the recording.
Rules
Since we may be more than 50 people, we have to enforce some rules to respect everyone’s time and attention.
- We will keep military time and discipline.
- Download, install and test Zoom before the workshop .
- Use video if you can.
- Use a stable internet connection.
- Don’t talk unless invited to by one of the moderators.
- Use a headset if you’re talking.
- When you’re not talking, mute your microphone.
- If you call with a hurricane in the background, we will mute you.
- Ask questions in the public “Chat”.