Hi all,
I’m testing state estimation capabilities of PandaPower lib. To emulate measurements i pass power flow results as feedback. For small test grids from pandapower.networks submodule (case9, case30, case39) all works fine, estimation is precise and bad data detection function robust to distortions in voltage, injection and flow meases. But when I try to apply this method to a little more larger networks (case89pegase for example) both basic WLS and advanced robust estimation algorithms don’t converge to correct point, or even diverges at all:
from pandapower.estimation import estimate
from pandapower.networks import *
from math import fabs
import pandapower as pp
def get_net():
return case89pegase()
def print_net_est_res(net):
print("\n########################################################################################################")
print(">>> est_res_bus:")
print(net.res_bus_est[['vm_pu', 'p_mw', 'q_mvar']])
print(">>> est_res_trafo:")
print(net.res_trafo_est[['p_hv_mw', 'q_hv_mvar', 'p_lv_mw', 'q_lv_mvar', 'i_hv_ka', 'i_lv_ka']])
print(">>> est_res_trafo3w:")
print(net.res_trafo3w_est[['p_hv_mw', 'q_hv_mvar', 'p_mv_mw', 'q_mv_mvar', 'p_lv_mw', 'q_lv_mvar', 'i_hv_ka', 'i_mv_ka', 'i_lv_ka']])
print(">>> est_res_line:")
print(net.res_line_est[['p_from_mw', 'q_from_mvar', 'p_to_mw', 'q_to_mvar', 'i_from_ka', 'i_to_ka']])
def print_est_comparison(net, net2, alarm_thr, noise_lim):
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
def diff_stat(ref_val, val, alarm_thr, noise_lim):
try:
abs_diff = ref_val - val
except Exception as ex:
print(ex)
if fabs(ref_val) < noise_lim or fabs(val) < noise_lim:
return '+'
else:
rel_diff = fabs(100 * abs_diff / ref_val)
if rel_diff > alarm_thr:
return '{:.3e}({:.2f}%)'.format(abs_diff, rel_diff)
else:
return '+'
# bus`s
for busIndex in net.bus.index:
net2.res_bus_est.vm_pu[busIndex] = diff_stat(net.res_bus.vm_pu[busIndex], net2.res_bus_est.vm_pu[busIndex], alarm_thr, noise_lim)
net2.res_bus_est.p_mw[busIndex] = diff_stat(net.res_bus.p_mw[busIndex], net2.res_bus_est.p_mw[busIndex], alarm_thr, noise_lim)
net2.res_bus_est.q_mvar[busIndex] = diff_stat(net.res_bus.q_mvar[busIndex], net2.res_bus_est.q_mvar[busIndex], alarm_thr, noise_lim)
# line`s
for lineIndex in net.line.index:
net2.res_line_est.p_from_mw[lineIndex] = diff_stat(net.res_line.p_from_mw[lineIndex], net2.res_line_est.p_from_mw[lineIndex], alarm_thr, noise_lim)
net2.res_line_est.p_to_mw[lineIndex] = diff_stat(net.res_line.p_to_mw[lineIndex], net2.res_line_est.p_to_mw[lineIndex], alarm_thr, noise_lim)
net2.res_line_est.q_from_mvar[lineIndex] = diff_stat(net.res_line.q_from_mvar[lineIndex], net2.res_line_est.q_from_mvar[lineIndex], alarm_thr, noise_lim)
net2.res_line_est.q_to_mvar[lineIndex] = diff_stat(net.res_line.q_to_mvar[lineIndex], net2.res_line_est.q_to_mvar[lineIndex], alarm_thr, noise_lim)
net2.res_line_est.i_from_ka[lineIndex] = diff_stat(net.res_line.i_from_ka[lineIndex], net2.res_line_est.i_from_ka[lineIndex], alarm_thr, noise_lim)
net2.res_line_est.i_to_ka[lineIndex] = diff_stat(net.res_line.i_to_ka[lineIndex], net2.res_line_est.i_to_ka[lineIndex], alarm_thr, noise_lim)
# trafo`s
for trafoIndex in net.trafo.index:
net2.res_trafo_est.p_hv_mw[trafoIndex] = diff_stat(net.res_trafo.p_hv_mw[trafoIndex], net2.res_trafo_est.p_hv_mw[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo_est.p_lv_mw[trafoIndex] = diff_stat(net.res_trafo.p_lv_mw[trafoIndex], net2.res_trafo_est.p_lv_mw[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo_est.q_hv_mvar[trafoIndex] = diff_stat(net.res_trafo.q_hv_mvar[trafoIndex], net2.res_trafo_est.q_hv_mvar[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo_est.q_lv_mvar[trafoIndex] = diff_stat(net.res_trafo.q_lv_mvar[trafoIndex], net2.res_trafo_est.q_lv_mvar[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo_est.i_hv_ka[trafoIndex] = diff_stat(net.res_trafo.i_hv_ka[trafoIndex], net2.res_trafo_est.i_hv_ka[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo_est.i_lv_ka[trafoIndex] = diff_stat(net.res_trafo.i_lv_ka[trafoIndex], net2.res_trafo_est.i_lv_ka[trafoIndex], alarm_thr, noise_lim)
# trafo3w`s
for trafoIndex in net.trafo3w.index:
net2.res_trafo3w_est.p_hv_mw[trafoIndex] = diff_stat(net.res_trafo3w.p_hv_mw[trafoIndex], net2.res_trafo3w_est.p_hv_mw[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo3w_est.p_lv_mw[trafoIndex] = diff_stat(net.res_trafo3w.p_lv_mw[trafoIndex], net2.res_trafo3w_est.p_lv_mw[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo3w_est.p_mv_mw[trafoIndex] = diff_stat(net.res_trafo3w.p_mv_mw[trafoIndex], net2.res_trafo3w_est.p_mv_mw[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo3w_est.q_hv_mvar[trafoIndex] = diff_stat(net.res_trafo3w.q_hv_mvar[trafoIndex], net2.res_trafo3w_est.q_hv_mvar[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo3w_est.q_lv_mvar[trafoIndex] = diff_stat(net.res_trafo3w.q_lv_mvar[trafoIndex], net2.res_trafo3w_est.q_lv_mvar[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo3w_est.q_mv_mvar[trafoIndex] = diff_stat(net.res_trafo3w.q_mv_mvar[trafoIndex], net2.res_trafo3w_est.q_mv_mvar[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo3w_est.i_hv_ka[trafoIndex] = diff_stat(net.res_trafo3w.i_hv_ka[trafoIndex], net2.res_trafo3w_est.i_hv_ka[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo3w_est.i_lv_ka[trafoIndex] = diff_stat(net.res_trafo3w.i_lv_ka[trafoIndex], net2.res_trafo3w_est.i_lv_ka[trafoIndex], alarm_thr, noise_lim)
net2.res_trafo3w_est.i_mv_ka[trafoIndex] = diff_stat(net.res_trafo3w.i_mv_ka[trafoIndex], net2.res_trafo3w_est.i_mv_ka[trafoIndex], alarm_thr, noise_lim)
print_net_est_res(net2)
def pass_meases_feedback(net, net2, v_stddev, pq_stddev, i_stddev):
# bus`s
for busIndex in net.bus.index:
vn_pu = net.res_bus.vm_pu[busIndex]
pp.create_measurement(net2, "v", "bus", vn_pu, v_stddev, element=busIndex)
p_mw = net.res_bus.p_mw[busIndex]
if p_mw != 0:
pp.create_measurement(net2, "p", "bus", p_mw, pq_stddev, element=busIndex)
q_mvar = net.res_bus.q_mvar[busIndex]
if q_mvar != 0:
pp.create_measurement(net2, "q", "bus", q_mvar, pq_stddev, element=busIndex)
# line`s
for lineIndex in net.line.index:
p_from_mw = net.res_line.p_from_mw[lineIndex]
pp.create_measurement(net2, "p", "line", p_from_mw, pq_stddev, element=lineIndex, side="from")
p_to_mw = net.res_line.p_to_mw[lineIndex]
pp.create_measurement(net2, "p", "line", p_to_mw, pq_stddev, element=lineIndex, side="to")
q_from_mvar = net.res_line.q_from_mvar[lineIndex]
pp.create_measurement(net2, "q", "line", q_from_mvar, pq_stddev, element=lineIndex, side="from")
q_to_mvar = net.res_line.q_to_mvar[lineIndex]
pp.create_measurement(net2, "q", "line", q_to_mvar, pq_stddev, element=lineIndex, side="to")
# i_from_ka = net.res_line.i_from_ka[lineIndex]
# pp.create_measurement(net2, "i", "line", i_from_ka, i_stddev, element=lineIndex, side="from")
# i_to_ka = net.res_line.i_to_ka[lineIndex]
# pp.create_measurement(net2, "i", "line", i_to_ka, i_stddev, element=lineIndex, side="to")
# trafo`s
for trafoIndex in net.trafo.index:
p_hv_mw = net.res_trafo.p_hv_mw[trafoIndex]
pp.create_measurement(net2, "p", "trafo", p_hv_mw, pq_stddev, element=trafoIndex, side="hv")
p_lv_mw = net.res_trafo.p_lv_mw[trafoIndex]
pp.create_measurement(net2, "p", "trafo", p_lv_mw, pq_stddev, element=trafoIndex, side="lv")
q_hv_mvar = net.res_trafo.q_hv_mvar[trafoIndex]
pp.create_measurement(net2, "q", "trafo", q_hv_mvar, pq_stddev, element=trafoIndex, side="hv")
q_lv_mvar = net.res_trafo.q_lv_mvar[trafoIndex]
pp.create_measurement(net2, "q", "trafo", q_lv_mvar, pq_stddev, element=trafoIndex, side="lv")
# i_hv_ka = net.res_trafo.i_hv_ka[trafoIndex]
# pp.create_measurement(net2, "i", "trafo", i_hv_ka, i_stddev, element=trafoIndex, side="hv")
# i_lv_ka = net.res_trafo.i_lv_ka[trafoIndex]
# pp.create_measurement(net2, "i", "trafo", i_lv_ka, i_stddev, element=trafoIndex, side="lv")
# trafo3w`s
for trafoIndex in net.trafo3w.index:
p_hv_mw = net.res_trafo3w.p_hv_mw[trafoIndex]
pp.create_measurement(net2, "p", "trafo3w", p_hv_mw, pq_stddev, element=trafoIndex, side="hv")
p_lv_mw = net.res_trafo3w.p_lv_mw[trafoIndex]
pp.create_measurement(net2, "p", "trafo3w", p_lv_mw, pq_stddev, element=trafoIndex, side="lv")
p_mv_mw = net.res_trafo3w.p_mv_mw[trafoIndex]
pp.create_measurement(net2, "p", "trafo3w", p_mv_mw, pq_stddev, element=trafoIndex, side="mv")
q_hv_mvar = net.res_trafo3w.q_hv_mvar[trafoIndex]
pp.create_measurement(net2, "q", "trafo3w", q_hv_mvar, pq_stddev, element=trafoIndex, side="hv")
q_lv_mvar = net.res_trafo3w.q_lv_mvar[trafoIndex]
pp.create_measurement(net2, "q", "trafo3w", q_lv_mvar, pq_stddev, element=trafoIndex, side="lv")
q_mv_mvar = net.res_trafo3w.q_mv_mvar[trafoIndex]
pp.create_measurement(net2, "q", "trafo3w", q_mv_mvar, pq_stddev, element=trafoIndex, side="mv")
# i_hv_ka = net.res_trafo3w.i_hv_ka[trafoIndex]
# pp.create_measurement(net2, "i", "trafo3w", i_hv_ka, i_stddev, element=trafoIndex, side="hv")
# i_lv_ka = net.res_trafo3w.i_lv_ka[trafoIndex]
# pp.create_measurement(net2, "i", "trafo3w", i_lv_ka, i_stddev, element=trafoIndex, side="lv")
# i_mv_ka = net.res_trafo3w.i_mv_ka[trafoIndex]
# pp.create_measurement(net2, "i", "trafo3w", i_mv_ka, i_stddev, element=trafoIndex, side="mv")
#################################################################################################################################
net = get_net()
pp.runpp(net, calculate_voltage_angles=True, enforce_q_lims=False)
net2 = get_net()
v_stddev = 0.01 # pu
pq_stddev = 0.01 # MW/Mvar
i_stddev= 0.002 # kA
pass_meases_feedback(net, net2, v_stddev, pq_stddev, i_stddev)
#chi2_test = chi2_analysis(net)
#success_rn_max = remove_bad_data(net2)
success = estimate(net2, calculate_voltage_angles=True, zero_injection='auto', init='flat')
if success:
print_est_comparison(net, net2, 1, 0.001)
Above code output absolute and relative differences between meas and its estimation if it >1% and ‘+’ for other measurements. PF result on input is not distorbed in this test:
>>> est_res_bus:
vm_pu p_mw q_mvar
0 4.476e-02(4.48%) 1.189e-02(5.99%) -4.371e+00(96.75%)
1 4.997e-02(4.75%) 3.510e-01(1.50%) 6.642e-01(1.16%)
10 4.262e-02(4.10%) + -1.352e+01(55.40%)
11 4.382e-02(4.28%) 2.145e-01(116.59%) 2.699e+00(170.75%)
12 4.699e-02(4.54%) + +
13 4.958e-02(4.87%) + +
14 4.429e-02(4.40%) + -1.005e+01(59.93%)
15 5.071e-02(4.85%) + +
16 4.433e-02(4.41%) + -9.396e+00(64.33%)
17 4.419e-02(4.38%) -4.605e-02(26.34%) 5.664e-01(38.00%)
18 4.555e-02(4.31%) + -5.919e+00(61.02%)
19 5.279e-02(5.16%) + -1.446e+00(1.06%)
2 5.056e-02(4.86%) + -1.338e+00(4.99%)
20 4.309e-02(4.15%) + +
21 4.328e-02(4.17%) + 4.698e+00(12.02%)
22 5.330e-02(5.24%) -1.280e-01(1.49%) -1.396e+00(94.35%)
23 4.306e-02(4.15%) + 2.455e+00(1.22%)
24 4.468e-02(4.50%) 3.853e-01(213.38%) -1.321e+01(59.09%)
25 5.087e-02(4.88%) + +
26 4.481e-02(4.52%) 2.602e-02(10.92%) -6.196e-01(55.17%)
27 4.752e-02(4.37%) + 3.800e+00(3.68%)
28 4.477e-02(4.48%) -1.658e-02(28.89%) -2.528e+00(66.43%)
29 4.165e-02(3.96%) + -7.791e+00(1133.28%)
3 4.199e-02(3.99%) 2.464e-02(48.45%) 4.671e+00(231.58%)
30 5.141e-02(5.03%) + -2.514e+00(4.16%)
31 4.231e-02(4.03%) + -1.161e+01(174.19%)
32 5.009e-02(4.75%) + 2.491e+00(3.03%)
33 4.702e-02(4.55%) + +
34 5.052e-02(4.85%) + 7.217e-01(1.18%)
35 5.188e-02(5.17%) + -1.321e+00(219.03%)
36 4.258e-02(4.05%) + +
37 5.011e-02(4.85%) + +
38 5.087e-02(4.88%) + -6.204e-01(173.32%)
39 5.110e-02(4.93%) + -8.452e-01(1.09%)
4 4.198e-02(3.99%) 7.738e-01(401.33%) -1.671e+01(20.44%)
40 5.079e-02(4.89%) + +
41 5.042e-02(4.81%) + +
42 5.065e-02(4.88%) + +
43 4.162e-02(3.95%) 6.423e-01(1.73%) -2.210e+01(46.29%)
44 5.009e-02(4.75%) 4.562e-01(2.16%) 1.319e+00(41.98%)
45 5.163e-02(5.01%) + +
46 4.730e-02(4.58%) + 4.013e+00(5.40%)
47 4.297e-02(4.14%) + -7.332e+00(27.06%)
48 4.479e-02(4.49%) 4.891e-01(156.22%) -7.681e+00(44.54%)
49 5.051e-02(4.85%) + -2.039e+00(570.29%)
5 4.703e-02(4.55%) + 1.437e+00(3.43%)
50 4.294e-02(4.12%) + -8.431e-01(34.80%)
51 4.991e-02(4.65%) + 1.225e+00(1.52%)
52 4.430e-02(4.39%) 1.656e-01(56.06%) -2.385e+00(557.30%)
53 4.297e-02(4.12%) -7.878e-02(44.17%) 1.925e+00(44.04%)
54 4.536e-02(4.64%) + -1.238e+01(7.47%)
55 4.196e-02(3.99%) + +
56 4.443e-02(4.47%) + -1.446e+01(43.47%)
57 4.460e-02(4.17%) + -6.392e+00(4.32%)
58 4.456e-02(4.44%) 1.043e-01(49.08%) -1.012e+00(149.35%)
59 4.192e-02(3.98%) + -5.364e+00(1.96%)
6 4.332e-02(4.20%) + +
60 4.976e-02(4.62%) + 1.152e+00(1.40%)
61 4.592e-02(4.74%) 1.783e-01(77.20%) -6.170e+00(135.91%)
62 4.393e-02(4.33%) + -1.126e+01(51.67%)
63 4.597e-02(4.73%) 1.822e-01(82.51%) -2.861e+00(71.90%)
64 5.011e-02(4.85%) + 8.730e-01(16.23%)
65 4.411e-02(4.34%) + -6.864e-01(1.09%)
66 5.028e-02(4.83%) + 1.411e+00(11.02%)
67 4.364e-02(4.21%) 1.623e+00(521.83%) 6.094e+00(91.92%)
68 4.406e-02(4.36%) 5.770e-01(185.64%) -1.020e+01(20.60%)
69 5.035e-02(4.75%) + 7.018e-01(2.34%)
7 5.189e-02(5.18%) + 2.465e+00(1.61%)
70 4.197e-02(3.99%) + -5.533e+00(3.59%)
71 4.364e-02(4.34%) + -5.209e-01(4.87%)
72 4.455e-02(4.45%) 4.370e-01(224.30%) -9.612e+00(50.10%)
73 4.455e-02(4.44%) 3.376e-01(159.45%) -6.259e+00(94.13%)
74 4.991e-02(4.65%) + +
75 4.248e-02(4.07%) 3.579e-01(219.17%) -2.878e+00(128.69%)
76 4.959e-02(4.87%) + +
77 5.070e-02(4.84%) + +
78 4.444e-02(4.43%) 1.265e-01(28.05%) -8.414e+00(39.80%)
79 4.368e-02(4.20%) + 9.454e+00(6.71%)
8 4.165e-02(3.96%) + -7.743e+00(1269.69%)
80 4.379e-02(4.28%) + -2.407e+00(1.24%)
81 4.410e-02(4.36%) -4.189e-02(22.62%) -1.641e+00(181.74%)
82 4.433e-02(4.40%) + -7.410e+00(44.67%)
83 5.331e-02(5.25%) + +
84 4.187e-02(3.96%) 4.631e-01(293.48%) -1.729e+01(61.20%)
85 4.455e-02(4.43%) 3.150e-01(151.52%) -2.111e+00(67.97%)
86 4.434e-02(4.41%) + -1.014e+01(65.77%)
87 5.268e-02(5.14%) -2.261e-01(1.26%) -3.603e+00(15.46%)
88 4.197e-02(3.99%) + -5.532e+00(3.59%)
9 4.415e-02(4.37%) + -9.518e+00(58.20%)
>>> est_res_trafo:
p_hv_mw q_hv_mvar p_lv_mw q_lv_mvar i_hv_ka i_lv_ka
0 + -4.616e+00(66.46%) + 3.769e+00(23.75%) -8.166e-03(4.64%) -1.403e-02(4.64%)
1 + -5.392e+00(36.87%) + 4.543e+00(18.86%) -8.133e-03(4.39%) -1.403e-02(4.39%)
10 + -7.653e+00(8.21%) + 4.152e+00(6.46%) -2.307e-02(5.88%) -5.566e-02(5.88%)
11 + -3.811e+00(4.68%) + + -2.227e-02(4.86%) -5.212e-02(4.86%)
12 + -4.257e+00(6.31%) + 1.152e+00(3.13%) -1.943e-02(4.95%) -4.603e-02(4.95%)
13 + -5.509e-01(2.27%) + + -1.182e-02(4.96%) -1.734e-02(4.96%)
14 + -9.139e+00(10.56%) + 3.740e+00(11.14%) -2.526e-02(4.97%) -6.316e-02(4.97%)
15 + 7.832e-02(1.42%) + -3.207e-01(3.92%) -6.333e-03(4.41%) -9.288e-03(4.41%)
16 + -2.485e-01(16.41%) + -1.344e-01(2.41%) -1.108e-02(4.61%) -1.625e-02(4.61%)
17 + -5.771e+00(6.14%) + 2.197e+00(3.43%) -2.510e-02(5.78%) -5.875e-02(5.78%)
18 + + + -3.570e+00(2.99%) -2.469e-02(5.02%) -5.635e-02(5.02%)
19 + -4.707e+00(2.02%) + -4.335e+00(3.17%) -3.349e-02(4.60%) -7.834e-02(4.60%)
2 + -7.084e+00(12.40%) + 5.033e+00(12.37%) -1.849e-02(6.06%) -4.369e-02(6.06%)
20 + -2.698e+00(2.34%) + + -2.081e-02(5.13%) -4.871e-02(5.13%)
21 + -4.543e+00(4.97%) + -6.506e-01(1.57%) -2.574e-02(5.07%) -6.098e-02(5.07%)
22 + -7.410e+00(4.58%) + -2.777e+00(5.81%) -3.703e-02(4.37%) -6.185e-02(4.37%)
23 + -4.520e-01(28.15%) + + -2.256e-03(4.46%) -3.308e-03(4.46%)
24 + -1.342e+00(20.26%) + -1.004e-01(1.10%) -9.075e-03(4.48%) -1.331e-02(4.48%)
25 + -4.464e-01(5.27%) + 3.253e-01(3.13%) -1.309e-03(3.07%) -1.920e-03(3.07%)
26 + -1.440e-01(9.01%) + 5.355e-02(2.05%) -6.037e-04(4.35%) -8.854e-04(4.35%)
27 + -1.216e-01(16.70%) + 5.048e-02(3.29%) -4.820e-04(4.31%) -7.070e-04(4.31%)
28 + -4.213e+00(3.91%) + -1.090e+00(1.91%) -2.820e-02(5.09%) -6.679e-02(5.09%)
29 + -2.371e-01(22.34%) + 3.515e-02(1.09%) -1.154e-03(4.54%) -1.692e-03(4.54%)
3 + -2.573e+00(2.14%) + + -2.035e-02(5.42%) -4.703e-02(5.42%)
30 + -4.379e+00(6.59%) + 1.941e+00(4.33%) -1.896e-02(5.48%) -4.592e-02(5.48%)
31 + -6.178e+00(19.11%) + 4.140e+00(28.92%) -1.624e-02(5.50%) -3.983e-02(5.50%)
32 + -6.682e-01(19.75%) + + -4.315e-03(4.57%) -6.329e-03(4.57%)
33 + -3.240e+00(1.76%) + -1.905e+00(1.43%) -2.750e-02(4.98%) -6.403e-02(4.98%)
34 + -7.605e+00(11.30%) + 4.523e+00(11.32%) -2.101e-02(5.49%) -5.051e-02(5.49%)
35 + -1.264e-01(1.96%) + + -2.404e-03(4.93%) -3.525e-03(4.93%)
36 + -2.927e+00(3.17%) + + -1.516e-02(4.89%) -2.532e-02(4.89%)
37 + -2.990e+00(3.17%) + + -1.549e-02(4.89%) -2.587e-02(4.89%)
38 + -2.662e-01(5.42%) + 2.051e-01(3.47%) -6.928e-04(2.99%) -1.016e-03(2.99%)
39 + -7.472e-02(11.06%) + 2.938e-02(2.50%) -3.054e-04(4.43%) -4.479e-04(4.43%)
4 + -2.448e-02(3.64%) + -6.199e-03(1.59%) -3.262e-04(5.28%) -4.784e-04(5.28%)
40 + -4.454e+00(4.85%) + 1.868e+00(2.69%) -1.929e-02(5.64%) -4.567e-02(5.64%)
41 + -1.611e+00(1.82%) + -1.623e+00(2.97%) -2.024e-02(4.65%) -4.682e-02(4.65%)
42 + -5.889e-01(5.94%) + 5.209e-01(4.87%) -2.600e-03(4.27%) -6.667e-03(4.27%)
43 + -6.626e+00(4.72%) + -3.381e+00(10.79%) -3.454e-02(4.48%) -8.165e-02(4.48%)
44 + -1.212e+01(11.65%) + -9.454e+00(6.71%) -8.237e-02(4.31%) -8.237e-02(4.31%)
45 + -9.952e-01(1.67%) + 6.864e-01(1.09%) -1.270e-02(4.46%) -1.270e-02(4.46%)
46 + -2.283e+00(2.06%) + -1.060e+00(1.36%) -2.191e-02(4.97%) -5.129e-02(4.97%)
47 + -4.306e+00(4.76%) + + -2.381e-02(5.14%) -5.628e-02(5.14%)
48 + -5.160e+00(2.10%) + -3.605e+00(2.35%) -3.531e-02(4.65%) -8.260e-02(4.65%)
49 + 8.462e-01(2.16%) + -1.892e+00(3.71%) -2.269e-02(4.32%) -2.269e-02(4.32%)
5 + -2.884e+00(1.88%) + -2.335e+00(2.29%) -2.919e-02(4.90%) -6.799e-02(4.90%)
6 + -7.899e+00(14.84%) + 4.423e+00(21.16%) -2.242e-02(5.24%) -5.385e-02(5.24%)
7 + -6.924e+00(497.86%) + 5.760e+00(53.81%) -1.004e-02(4.70%) -1.729e-02(4.70%)
8 + -6.843e-03(3.42%) + 2.725e-03(1.70%) -9.466e-05(5.03%) -1.388e-04(5.03%)
9 + -2.687e+00(2.63%) + -1.550e+00(2.57%) -2.373e-02(4.93%) -5.552e-02(4.93%)
>>> est_res_trafo3w:
Empty DataFrame
Columns: [p_hv_mw, q_hv_mvar, p_mv_mw, q_mv_mvar, p_lv_mw, q_lv_mvar, i_hv_ka, i_mv_ka, i_lv_ka]
Index: []
>>> est_res_line:
p_from_mw q_from_mvar p_to_mw q_to_mvar i_from_ka i_to_ka
0 + 2.103e+00(31.54%) + -3.027e+00(73.58%) -2.202e-02(4.20%) -2.202e-02(4.20%)
1 + 1.239e+00(2.49%) + -2.485e+00(6.82%) -1.668e-02(4.55%) -1.668e-02(4.55%)
10 4.639e-01(7.90%) 2.035e+00(9.36%) -4.557e-01(7.89%) -1.998e+00(9.38%) 3.665e-03(4.33%) 3.665e-03(4.33%)
100 + + + -2.224e-03(1.05%) -9.955e-05(5.71%) -9.955e-05(5.71%)
101 + 1.027e+00(4.97%) + -1.712e+00(12.57%) -1.797e-02(4.75%) -1.797e-02(4.75%)
102 2.748e-03(3.16%) -3.686e-03(1.95%) -2.752e-03(3.17%) 3.414e-03(1.78%) + +
103 -2.021e-02(6.71%) -3.439e-02(2.20%) 1.993e-02(6.58%) 3.251e-02(2.09%) -4.059e-04(6.97%) -4.059e-04(6.97%)
104 -4.480e-01(7.68%) -7.410e-01(2.20%) 4.416e-01(7.52%) 7.011e-01(2.10%) -8.738e-03(7.01%) -8.738e-03(7.01%)
105 + 1.632e+00(8.80%) + -1.769e+00(10.34%) -1.503e-02(4.65%) -1.503e-02(4.65%)
106 + + + -2.323e+00(1.68%) -3.386e-02(4.74%) -3.386e-02(4.74%)
107 + 3.817e+00(4.32%) + -4.392e+00(4.68%) -2.513e-02(4.96%) -2.513e-02(4.96%)
108 + -8.277e-02(6.26%) + 6.485e-02(5.70%) -8.903e-04(4.72%) -8.903e-04(4.72%)
109 2.316e-01(2.27%) 1.300e+00(7.94%) -2.307e-01(2.27%) -1.296e+00(7.98%) 1.117e-03(1.57%) 1.117e-03(1.57%)
11 + 2.069e-02(5.31%) + -3.029e-02(6.59%) -3.095e-04(6.64%) -3.095e-04(6.64%)
110 + 2.921e-01(6.41%) + -2.980e-01(6.83%) -3.260e-04(1.47%) -3.260e-04(1.47%)
111 + -7.803e-02(7.81%) + 6.402e-02(7.44%) -6.563e-04(4.93%) -6.563e-04(4.93%)
112 + -4.054e-02(7.45%) + 2.802e-03(1.87%) -1.181e-03(4.68%) -1.181e-03(4.68%)
113 + -2.910e-02(11.61%) + -1.391e-02(9.77%) -6.077e-04(5.33%) -6.077e-04(5.33%)
114 + 3.261e-01(3.14%) + -4.388e-01(3.80%) -7.821e-03(4.75%) -7.821e-03(4.75%)
115 + 1.271e-02(1.64%) + -1.990e-02(2.35%) -3.682e-04(4.79%) -3.682e-04(4.79%)
116 + -8.726e-01(7.31%) + 4.112e-01(5.63%) -1.268e-02(4.86%) -1.268e-02(4.86%)
117 + 3.775e-02(28.85%) + -4.327e-02(22.63%) -2.621e-04(4.47%) -2.621e-04(4.47%)
118 1.374e-02(5.25%) 3.454e-02(16.20%) -1.351e-02(5.21%) -3.394e-02(16.41%) 5.976e-05(4.77%) 5.976e-05(4.77%)
119 -1.884e-01(49.25%) -4.295e-01(3.37%) 1.866e-01(47.59%) 4.163e-01(3.29%) -4.113e-03(8.69%) -4.113e-03(8.69%)
12 + + + -5.934e-01(1.40%) -1.874e-02(5.63%) -1.874e-02(5.63%)
120 + 8.958e-01(32.07%) + -1.009e+00(59.79%) -9.746e-03(5.00%) -9.746e-03(5.00%)
121 + -2.135e-02(7.74%) + 4.242e-03(3.21%) -3.244e-04(5.78%) -3.244e-04(5.78%)
122 -1.415e-02(1.76%) -2.509e-02(6.54%) 1.392e-02(1.72%) 2.419e-02(6.46%) -1.635e-04(4.94%) -1.635e-04(4.94%)
123 -2.365e-01(8.87%) -4.684e-01(14.18%) 2.359e-01(8.85%) 4.656e-01(14.12%) -2.813e-03(17.88%) -2.813e-03(17.88%)
124 + -2.874e-03(3.10%) + + -1.248e-04(5.21%) -1.248e-04(5.21%)
125 7.730e-01(2.77%) 1.172e+00(8.16%) -7.752e-01(2.78%) -1.186e+00(8.17%) -3.504e-03(4.40%) -3.504e-03(4.40%)
126 + -1.813e+00(13.12%) + 1.449e+00(14.31%) -1.688e-02(4.82%) -1.688e-02(4.82%)
127 + + + -9.783e-01(1.01%) -2.678e-02(4.68%) -2.678e-02(4.68%)
128 + + + + + +
129 + -4.231e+00(6.54%) + 4.027e+00(5.91%) -1.188e-02(2.91%) -1.188e-02(2.91%)
13 + -1.734e+00(112.31%) + 6.116e-01(5.32%) -6.113e-02(5.49%) -6.113e-02(5.49%)
130 + 3.199e-02(20.53%) -1.096e-02(1.00%) -3.627e-02(18.16%) -1.963e-04(4.75%) -1.963e-04(4.75%)
131 + 1.933e-02(27.05%) + -3.333e-02(43.74%) -4.238e-04(4.63%) -4.238e-04(4.63%)
132 + -1.308e-01(3.47%) + -1.571e-01(14.60%) -3.882e-03(5.22%) -3.882e-03(5.22%)
133 1.750e-02(1.37%) 2.641e-02(7.12%) -1.904e-02(1.52%) -2.951e-02(7.28%) -2.166e-04(4.41%) -2.166e-04(4.41%)
134 + 1.631e-02(9.02%) -9.434e-03(1.03%) -1.966e-02(9.09%) -1.613e-04(4.60%) -1.613e-04(4.60%)
135 + 5.742e-01(18.85%) + -8.851e-01(479.93%) -8.106e-03(4.70%) -8.106e-03(4.70%)
136 + 1.058e+00(1.48%) + -1.406e+00(1.88%) -1.495e-02(5.10%) -1.495e-02(5.10%)
137 + 4.051e+00(28.46%) + -4.060e+00(28.36%) -3.980e-02(5.50%) -3.980e-02(5.50%)
138 8.846e-03(4.86%) 3.182e-02(25.86%) -8.747e-03(4.83%) -3.139e-02(26.27%) + +
139 + + + -1.306e+00(4.11%) -1.434e-02(4.66%) -1.434e-02(4.66%)
14 + -1.142e-02(1.07%) + -2.574e-02(1.84%) -8.733e-04(5.54%) -8.733e-04(5.54%)
140 6.322e-02(8.35%) 3.017e-01(9.92%) -6.178e-02(8.32%) -2.957e-01(9.92%) 6.048e-04(5.21%) 6.048e-04(5.21%)
141 4.384e-02(2.55%) 2.372e-01(11.93%) -4.316e-02(2.53%) -2.338e-01(12.11%) 2.978e-04(3.06%) 2.978e-04(3.06%)
142 + + + -3.156e+00(1.65%) -2.740e-02(4.40%) -2.740e-02(4.40%)
143 + 9.558e-01(8.83%) + -1.059e+00(9.09%) -8.544e-03(6.11%) -8.544e-03(6.11%)
144 -6.937e-02(1.18%) 1.128e+00(6.93%) 7.036e-02(1.19%) -1.124e+00(6.97%) 8.415e-04(1.30%) 8.415e-04(1.30%)
145 -6.380e-03(1.53%) -2.023e-02(6.62%) 6.357e-03(1.52%) 1.929e-02(6.46%) -1.262e-04(6.58%) -1.262e-04(6.58%)
146 -7.160e-03(30.19%) -1.945e-02(5.58%) 7.108e-03(30.25%) 1.886e-02(5.45%) -1.443e-04(11.14%) -1.443e-04(11.14%)
147 + + + -2.490e-01(1.42%) -9.992e-03(5.58%) -9.992e-03(5.58%)
148 + + + + -8.395e-03(5.53%) -8.395e-03(5.53%)
149 + 3.974e-04(2.59%) + -2.573e-03(33.91%) -1.256e-04(4.64%) -1.256e-04(4.64%)
15 9.653e-02(4.96%) 3.217e-01(9.16%) -9.503e-02(4.94%) -3.164e-01(9.23%) 4.787e-04(3.17%) 4.787e-04(3.17%)
150 + 4.942e-03(4.51%) + -6.007e-03(6.12%) -9.685e-05(4.54%) -9.685e-05(4.54%)
151 + -6.894e-01(8.38%) + 6.759e-01(8.03%) -2.175e-03(3.58%) -2.175e-03(3.58%)
152 + -3.873e+00(6.68%) + 3.771e+00(6.36%) -1.120e-02(3.94%) -1.120e-02(3.94%)
153 + -4.851e+00(5.96%) + 4.666e+00(5.86%) -2.409e-02(4.93%) -2.409e-02(4.93%)
154 + + + + + +
155 + 3.814e+00(2.68%) + -3.864e+00(2.70%) -3.348e-02(4.34%) -3.348e-02(4.34%)
156 + + + -8.357e-01(3.77%) -1.389e-02(5.53%) -1.389e-02(5.53%)
157 + -1.061e+00(3.39%) + + -1.597e-02(5.64%) -1.597e-02(5.64%)
158 + -3.530e-01(3.58%) + 3.139e-01(3.31%) -6.620e-03(4.91%) -6.620e-03(4.91%)
159 + -3.570e+00(2.34%) + 3.525e+00(2.30%) -8.277e-02(4.66%) -8.277e-02(4.66%)
16 + + + -7.856e-02(1.21%) -2.735e-03(5.60%) -2.735e-03(5.60%)
17 + -3.847e-01(12.66%) + 1.457e-01(2.83%) -1.178e-02(5.49%) -1.178e-02(5.49%)
18 + 6.592e-01(1.13%) + -6.921e-01(1.18%) -6.979e-03(5.08%) -6.979e-03(5.08%)
19 + -7.207e-01(4.21%) + -7.186e-01(2.21%) -2.556e-02(4.58%) -2.556e-02(4.58%)
2 + 4.840e-01(1.26%) + -8.316e-01(1.98%) -9.626e-03(4.67%) -9.626e-03(4.67%)
20 + 1.156e+00(2.15%) + -1.187e+00(2.19%) -7.556e-03(5.30%) -7.556e-03(5.30%)
21 + -1.206e+00(2.13%) + 6.344e-01(1.01%) -2.971e-02(4.64%) -2.971e-02(4.64%)
22 + -2.530e-01(25.74%) + 2.432e-01(22.38%) -1.426e-03(4.58%) -1.426e-03(4.58%)
23 + 3.368e-01(1.19%) + -3.372e-01(1.20%) -8.252e-03(5.69%) -8.252e-03(5.69%)
24 + 5.713e-03(1.11%) + -1.249e-02(2.82%) -1.772e-04(4.56%) -1.772e-04(4.56%)
25 + -5.647e-02(7.84%) + 4.653e-02(7.56%) -5.562e-04(4.62%) -5.562e-04(4.62%)
26 2.288e-02(2.13%) + -2.337e-02(2.19%) + -5.199e-04(4.55%) -5.199e-04(4.55%)
27 -2.141e-02(6.15%) -4.420e-02(12.15%) 2.188e-02(6.19%) 4.516e-02(12.06%) 8.726e-05(4.58%) 8.726e-05(4.58%)
28 1.199e-02(3.22%) 1.797e-02(1.74%) -1.210e-02(3.25%) -1.960e-02(1.88%) -2.669e-04(6.51%) -2.669e-04(6.51%)
29 + -5.152e-01(5.36%) + 4.487e-01(4.34%) -5.027e-03(4.54%) -5.027e-03(4.54%)
3 -5.870e-01(1.78%) -1.088e+00(1.65%) 4.501e-01(1.32%) 7.118e-01(1.13%) -9.718e-03(5.36%) -9.718e-03(5.36%)
30 -2.385e-02(1.01%) -3.027e-02(19.96%) + 5.321e-03(8.81%) -4.782e-04(5.72%) -4.782e-04(5.72%)
31 -3.855e-01(1.49%) -1.128e+00(32.13%) 3.831e-01(1.48%) 1.117e+00(30.23%) -2.966e-03(3.07%) -2.966e-03(3.07%)
32 + -8.693e-02(6.47%) + 8.629e-02(6.37%) -2.321e-04(2.97%) -2.321e-04(2.97%)
33 + 1.387e+00(2.22%) + -1.400e+00(2.23%) -4.815e-02(5.29%) -4.815e-02(5.29%)
34 + 7.565e-02(3.35%) + -7.805e-02(3.51%) -4.169e-04(3.35%) -4.169e-04(3.35%)
35 + -6.367e-02(3.38%) + -1.032e-01(45.78%) -7.682e-03(4.92%) -7.682e-03(4.92%)
36 + 1.020e-01(2.56%) + -1.377e-01(3.87%) -1.101e-03(4.05%) -1.101e-03(4.05%)
37 + -1.467e-02(2.20%) + + -4.459e-04(4.69%) -4.459e-04(4.69%)
38 8.252e-02(1.32%) 2.145e-01(878.55%) -8.559e-02(1.37%) -2.221e-01(715.54%) -1.534e-03(6.62%) -1.534e-03(6.62%)
39 -1.805e-02(3.39%) -3.309e-02(17.37%) 1.805e-02(3.34%) 3.309e-02(16.14%) + +
4 + -2.801e+00(1.79%) + 2.270e+00(1.50%) -2.622e-02(5.36%) -2.622e-02(5.36%)
40 2.198e-01(1.75%) 6.576e-01(7.37%) -2.284e-01(1.82%) -6.927e-01(7.61%) -5.250e-03(9.14%) -5.250e-03(9.14%)
41 + -1.901e-03(1.58%) + + -1.279e-04(4.60%) -1.279e-04(4.60%)
42 + 2.884e-02(3.41%) + -4.108e-02(5.85%) -3.530e-04(4.20%) -3.530e-04(4.20%)
43 + -1.977e-02(5.60%) + + -3.930e-04(5.67%) -3.930e-04(5.67%)
44 + 5.807e-03(1.10%) + -1.005e-02(2.07%) -4.200e-04(4.69%) -4.200e-04(4.69%)
45 + 5.566e-01(173.51%) + -5.807e-01(103.53%) -5.361e-03(4.89%) -5.361e-03(4.89%)
46 + -1.308e+00(3.16%) + 1.265e+00(3.01%) -7.282e-03(3.45%) -7.282e-03(3.45%)
47 + 6.337e-01(2.28%) + -6.713e-01(2.39%) -9.239e-03(6.41%) -9.239e-03(6.41%)
48 + -7.157e+00(1041.06%) + 7.157e+00(1041.03%) + +
49 + -2.861e+00(7.90%) + 2.476e+00(7.71%) -1.354e-02(4.58%) -1.354e-02(4.58%)
5 + + + + -1.430e-02(4.74%) -1.430e-02(4.74%)
50 + -7.181e+00(1177.48%) + 7.181e+00(1177.44%) + +
51 + -3.368e+00(7.04%) + 2.917e+00(6.78%) -1.589e-02(4.58%) -1.589e-02(4.58%)
52 -8.665e-03(3.43%) -2.257e-02(2.38%) 8.001e-03(3.22%) 1.926e-02(2.08%) -1.718e-04(7.06%) -1.718e-04(7.06%)
53 + -2.955e-01(1.77%) + 2.416e-01(1.48%) -2.931e-03(6.13%) -2.931e-03(6.13%)
54 + + + + -1.832e-02(4.66%) -1.832e-02(4.66%)
55 + -3.829e+00(4.20%) + 3.362e+00(3.88%) -2.332e-02(5.05%) -2.332e-02(5.05%)
56 + + + + -1.682e-02(4.59%) -1.682e-02(4.59%)
57 + -2.924e+00(2.66%) + 2.532e+00(2.38%) -2.215e-02(5.05%) -2.215e-02(5.05%)
58 + + + -3.088e+00(2.43%) -4.788e-02(4.35%) -4.788e-02(4.35%)
59 + -6.688e+00(5.96%) + 3.362e+00(4.36%) -4.120e-02(4.62%) -4.120e-02(4.62%)
6 + -5.518e+00(5.85%) + 5.021e+00(5.57%) -2.450e-02(5.67%) -2.450e-02(5.67%)
60 + -2.595e+00(3.11%) + 2.560e+00(3.09%) -2.173e-02(4.74%) -2.173e-02(4.74%)
61 + + + -5.049e+00(3.36%) -4.964e-02(4.47%) -4.964e-02(4.47%)
62 + -5.084e+00(7.34%) + 5.054e+00(7.33%) -2.017e-02(5.12%) -2.017e-02(5.12%)
63 + + + -1.485e+00(1.53%) -4.330e-02(4.58%) -4.330e-02(4.58%)
64 + + + -4.053e+00(1.27%) -4.407e-02(4.29%) -4.407e-02(4.29%)
65 + + + -9.079e+00(2.41%) -8.468e-02(4.34%) -8.468e-02(4.34%)
66 + -1.831e+00(1.22%) + + -3.545e-02(4.28%) -3.545e-02(4.28%)
67 + + + -6.694e+00(3.07%) -3.857e-02(4.20%) -3.857e-02(4.20%)
68 + + + -4.255e+00(1.30%) -4.626e-02(4.29%) -4.626e-02(4.29%)
69 + 3.080e+00(3.03%) + -3.335e+00(3.20%) -2.406e-02(5.00%) -2.406e-02(5.00%)
7 + + + -1.730e+00(1.10%) -2.705e-02(4.95%) -2.705e-02(4.95%)
70 + -1.588e+00(7.98%) + 4.956e-01(1.62%) -4.254e-02(4.97%) -4.254e-02(4.97%)
71 + 7.248e+00(7.87%) + -7.481e+00(7.96%) -2.304e-02(5.88%) -2.304e-02(5.88%)
72 + 1.900e+00(1.74%) + -1.922e+00(1.75%) -6.446e-02(5.83%) -6.446e-02(5.83%)
73 -3.492e-01(1.16%) -2.050e+00(11.06%) 3.343e-01(1.12%) 1.967e+00(9.94%) -4.460e-03(3.29%) -4.460e-03(3.29%)
74 + -1.451e+00(3.24%) + 1.382e+00(3.01%) -6.199e-03(3.05%) -6.199e-03(3.05%)
75 + -1.018e-01(4.16%) + 9.996e-02(3.98%) -1.371e-04(1.37%) -1.371e-04(1.37%)
76 + -3.170e-02(5.54%) + 3.078e-02(5.17%) -6.547e-05(2.03%) -6.547e-05(2.03%)
77 + -9.279e-02(26.05%) + -1.611e-01(8.88%) -4.884e-03(5.68%) -4.884e-03(5.68%)
78 + + + -3.765e-01(1.03%) -1.350e-02(5.10%) -1.350e-02(5.10%)
79 + -7.258e+00(3.83%) + 6.736e+00(3.65%) -3.082e-02(4.93%) -3.082e-02(4.93%)
8 + 1.279e+00(5.82%) + -1.337e+00(5.95%) -2.588e-02(5.53%) -2.588e-02(5.53%)
80 + -7.679e+00(2.87%) + -2.349e+00(1.50%) -6.326e-02(4.44%) -6.326e-02(4.44%)
81 + -5.622e+00(3.68%) + 5.532e+00(3.59%) -2.435e-02(3.78%) -2.435e-02(3.78%)
82 + -5.620e+00(3.67%) + 5.533e+00(3.59%) -2.435e-02(3.78%) -2.435e-02(3.78%)
83 + -6.911e+00(3.06%) + 6.848e+00(3.02%) -2.074e-02(3.35%) -2.074e-02(3.35%)
84 + -9.744e+00(3.47%) + + -7.228e-02(4.48%) -7.228e-02(4.48%)
85 + -5.934e+00(2.22%) + 5.364e+00(1.96%) -5.729e-02(4.02%) -5.729e-02(4.02%)
86 + 3.657e+00(10.97%) + -3.681e+00(10.96%) -6.311e-02(4.97%) -6.311e-02(4.97%)
87 + 2.699e-02(2.88%) + -6.560e-02(12.68%) -4.084e-04(4.50%) -4.084e-04(4.50%)
88 + 3.123e-01(2.13%) + -9.224e-01(11.27%) -6.477e-03(4.58%) -6.477e-03(4.58%)
89 + 5.335e-01(4.05%) + -2.385e+00(37.93%) -2.246e-02(4.65%) -2.246e-02(4.65%)
9 1.249e-02(4.07%) 2.679e-02(7.50%) -1.286e-02(4.17%) -2.913e-02(7.94%) -2.096e-04(11.83%) -2.096e-04(11.83%)
90 + 8.060e-01(4.38%) + -8.540e-01(5.09%) -1.196e-03(1.47%) -1.196e-03(1.47%)
91 + 1.215e-01(4.29%) + -2.141e-01(11.82%) -1.165e-03(4.44%) -1.165e-03(4.44%)
92 + 1.250e-01(6.28%) + -2.003e-01(17.42%) -1.000e-03(4.39%) -1.000e-03(4.39%)
93 + -5.010e+00(13.06%) + 4.955e+00(12.66%) -1.010e-02(3.49%) -1.010e-02(3.49%)
94 + -1.231e+01(5.20%) + + -8.278e-02(4.34%) -8.278e-02(4.34%)
95 + 7.838e-01(1.20%) + -8.005e-01(1.22%) -5.527e-02(5.61%) -5.527e-02(5.61%)
96 + + + + -4.789e-02(4.18%) -4.789e-02(4.18%)
97 + -1.384e+00(57.13%) + 1.384e+00(57.13%) -2.256e-03(63.89%) -2.256e-03(63.89%)
98 + 5.777e-01(1.89%) + -5.779e-01(1.89%) -5.775e-03(3.89%) -5.775e-03(3.89%)
99 + -7.609e-01(21.02%) + 2.726e-01(23.14%) -1.370e-02(4.96%) -1.370e-02(4.96%)
It is seen that for a part of the measurement the estimations differs significantly from the PF result. Another observation: for some networks estimations done without using current measuremets is better then with it. I also tried to use PF result as an initial point for SE algo (init=‘results’), however i got the same result. Could enyone explain what i’m doing wrong or give any advice? Is it correct way to use PF result for test SE? Or mayby i use inappropriate meas error weights (stddev) or estimate() function params?
test_panda_se.ipynb (12.0 KB)
result.txt (30.8 KB)
Thanks