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► Climate predictions: Some basic concepts

• Time scales 

• Sources of predictability

• Probabilistic predictions

► Climate services chain

1. Data acquisition

2. Post-processing

- Lagged ensembles

- Bias adjustment

- Forecast quality assessment

3. Impact models

4. Decision Support Tool

Outlook



Climate time scales

Adapted from: Meehl et al. (2009)
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Credit: Andrea Lang (U. of Albany)
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4th Dec 2019

Hindcast is used for:

• Forecast quality assessment

• Bias adjustment

4th Dec 2020

ForecastHindcasts

4th Dec 2000

Forecast and hindcasts

Adapted from: https://www.ecmwf.int/



Climate services chain



1. Data acquisition: Sources

SUBSEASONAL PREDICTIONS

● S2S Prediction Project  (http://www.s2sprediction.net/)

- Data base: Collection of 11 systems for research

https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/type=cf/

http://s2s.cma.cn/index

- S2S Real-time Pilot Initiative (16 projects involved)

● The Subseasonal Experiment (SubX):

Collection of 7 North American and Canadian systems in real time

http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/

SEASONAL PREDICTIONS

• Copernicus Climate Change Services (C3S)

7 systems (ex. ECMWF SEAS5)

https://cds.climate.copernicus.eu/api-how-to/

OBSERVATIONS / REANALYSIS PRODUCT

• Copernicus Climate Change Services (C3S)

ERA-5

https://cds.climate.copernicus.eu/api-how-to/

● NOAA NCEP CFSv2

https://www.ftp.ncep.noaa.gov/

https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/type=cf/
http://s2s.cma.cn/index
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/
https://cds.climate.copernicus.eu/api-how-to/
https://cds.climate.copernicus.eu/api-how-to/
https://www.ftp.ncep.noaa.gov/


https://confluence.ecmwf.int/display/S2S/Models

HindcastsForecast

S2S predictions systems



● Lagged ensembles: Ensemble of forecasts 

from the same model initialised at different 

times but verifying at the same time.

2. Post-processing: lagged ensembles

● Burst ensemble: Ensemble members are 

initialised at the same time with slightly 

different initial conditions

Source: https://www.ecmwf.int



Source: Eric Stokes

Raw model output at these timescales has systematic biases that need to be corrected

Model bias

2. Post-processing: Bias adjustment and calibration

● Bias adjustment techniques to remove model errors and produce reliable and well calibrated forecasts (forecast 

distribution to have similar statistical properties to the reference) 

○ Simple bias adjustment

○ Variance Inflation (Calibration)

○ Empirical quantile mapping

○ Machine learning 

https://CRAN.R-project.org/package=CSTools

R package:

https://cran.r-project.org/package=CSTools


• Bias are lead-dependent -> Corrections need to be lead dependent

• Reference climatology -> The short hindcast length and fewer ensemble members can limit the 
representativeness of the climate distribution

Figure: ECMWF sfcWind for for start date 20161222 and location (46.5 N ,6 E)

Bias adjustment and calibration
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Skill > 0
In the long term, there is an added value of using climate 
prediction over the use of mean past observations.

2. Post processing: Forecast quality assessment

The quality (or skill) of climate predictions varies with:

REGION MONTH/SEASON TEMPORAL HORIZON

SKILL SCORES

● Relative measure of the quality a system’s 

forecasts for the time period and location

● Typically measured on the system’s hindcast 

● For tercile probabilities: Fair Ranked 

probability skill score (fair RPSS)

● For extremes (p10, p90): Fair Brier Skill 

Score (fair BSS)



• Ranked Probability Score (RPS) 

𝑅𝑃𝑆 = σ𝑚=1
𝐽 σ𝑗=1

𝑚 𝑦𝑗 − σ𝑗=1
𝑚 𝑜𝑗

2

Forecasts:         y1 = 0.12   y2 = 0.20  y1 = 0.68     

Observations:  o1= 0         o2= 0         o3= 1 

● Ranked probability Skill Sore (RPSS)
Relative measure of the quality a system’s forecasts compared to a reference

(e.g. climatological forecast or persistence)

𝑆𝑘𝑖𝑙𝑙 𝑠𝑐𝑜𝑟𝑒 =
𝑆𝑓𝑐𝑠𝑡 − 𝑆𝑟𝑒𝑓

𝑆𝑝𝑒𝑟𝑓 − 𝑆𝑟𝑒𝑓
= 1 −

𝑆𝑓𝑐𝑠𝑡

𝑆𝑟𝑒𝑓

SS > 0  Forecast is better than reference

SS < 0  Forecast is worse than reference

2. Post processing: Skill scores

R packages: 

SpecsVerification (https://cran.r-project.org/web/packages/SpecsVerification/index.html)

Easyverification (https://cran.r-project.org/web/packages/easyVerification/index.html)

s2dv (https://cran.r-project.org/web/packages/s2dv/index.html)

https://cran.r-project.org/web/packages/SpecsVerification/index.html
https://cran.r-project.org/web/packages/easyVerification/index.html
https://cran.r-project.org/web/packages/s2dv/index.html
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DEFINITION OF CLIMATOLOGY:

Weekly: 1 start date, 20 years
Monthly: All start dates in a calendar month, 8/9 start dates, 20 years
Monthly running window: Running window with 4 start dates before and after the target
week, 9 start dates, 20 years

SAMPLE SIZE FOR SKILL SCORE:

• Single start date: 1 start date, 20 years
• Monthly start dates: 8/9 start dates, 20 years 

Choices in sample size for the skill score and definition of climatology

x 20 years (1999-2015) 

weeky

Manrique-Suñén et al. (2020)



► Conversion from essential climate variables to tailored variables

3. Impact models

Addressed in next talk by Hannah Bloomfield



4. Integration within the DST

www.s2s4e.eu

http://www.s2s4e.eu/


Take home messages

► Climate models can provide climate predictions for the next weeks and months 

► Climate predictions are not like weather forecasts, they provide information on probabilistic averaged 
statistical properties (e. g. how likely it is that the average temperature next week/month will be 
above/normal/below average)

► Uncertainty in climate predictions due to random errors -> Ensemble forecasts

► Climate predictions have systematic errors that can be corrected ->  Bias adjustment

► Forecast quality assessment has to be conducted to associate a level of skill to a certain forecast. Skill varies 
with location, time of the year and temporal horizon.



Thank you

Public reports of the project are available for download on the S2S4E 

website: www.s2s4e.eu

Project coordinator: Albert Soret, Barcelona Supercomputing Center

Project contact email: s2s4e@bsc.es

Stay connected by following us on LinkedIn, Twitter, and Facebook.

https://s2s4e.eu/
http://www.s2s4e.eu
mailto:s2s4e@bsc.es
https://www.linkedin.com/company/s2s4e
https://twitter.com/s2s4e
https://www.facebook.com/s2s4e/


Earth components and sources of predictability

Weather Subseasonal Seasonal


