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• Spread in model outputs across uncertain 
demand and weather can be large: risk in 
“picking wrong year” 

• Other studies have shown similar results: 
Bloomfield et al (2016), Staffell & Pfenninger (2018) Collins et al 
(2018), Bothwell & Hobbs (2018), Kumler et al (2019), Bryce et 
al (2018), Amorim et al (2020).
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Inefficient in 

• data: 100 years of demand and weather data 

• computation: 100 1-year simulations
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• Details: AP Hilbers, DJ Brayshaw, A Gandy (2020). Efficient quantification of the 
impact of demand and weather uncertainty in power system models. IEEE 
Transactions on Power Systems.


