AP Hilbers, DJ Brayshaw, A Gandy. Efficient quantification of the impact of demand and weather uncertainty in energy system models. United Kingdom: Imperial College London, University of Reading. Version 1. Creative Commons CC-BY-4.0 license.

Efficient quantification of the impact of demand and weather uncertainty in energy system models

AP Hilbers 1, DJ Brayshaw 2, A Gandy 1

1: Department of Mathematics, Imperial College London 2: Department of Meteorology, University of Reading

Climate forecasting for energy workshop

aineering and Physical Sciences

INPUTS

Demand & weather data at different locations on the grid

- Demand levels
- Wind speeds
- Solar irradiances

Uncertain inputs

 Spread in model outputs across uncertain demand and weather can be large: risk in "picking wrong year"

 Other studies have shown similar results: Bloomfield et al (2016), Staffell & Pfenninger (2018) Collins et al (2018), Bothwell & Hobbs (2018), Kumler et al (2019), Bryce et al (2018), Amorim et al (2020).

Imperial College London

Can we quantify this demand and weather uncertainty?

Model output

Can we quantify this demand and weather uncertainty?

Model output

Can we quantify this demand and weather uncertainty?

Obtain 100 years of data

Inefficient in

- data: 100 years of demand and weather data
- computation: 100 1-year simulations

Obtain 5 years of data

Short sample 100

Resample weeks from seasons

e.g. one week from winter, spring, summer, autumn

Resample weeks from seasons

e.g. one week from winter, spring, summer, autumn

Resample weeks from seasons

e.g. one week from winter, spring, summer, autumn

Resample weeks from seasons

e.g. one week from winter, spring, summer, autumn

Resample weeks from seasons

e.g. one week from winter, spring, summer, autumn

Efficient in

- data: 100 5 years of demand and weather data
- computation: 100 1-year short simulations

Imperial College London

 Impact of demand and weather uncertainty on energy system model outputs can be significant.

- Impact of demand and weather uncertainty on energy system model outputs can be significant.
- Existing uncertainty quantification techniques inefficient in data and computation, often unfeasible.

- Impact of demand and weather uncertainty on energy system model outputs can be significant.
- Existing uncertainty quantification techniques inefficient in data and computation, often unfeasible.
- Approach, based on *m* out of *n* bootstrap, resamples shorter datasets, reducing computing cost and removes need for any additional data.

- Impact of demand and weather uncertainty on energy system model outputs can be significant.
- Existing uncertainty quantification techniques inefficient in data and computation, often unfeasible.
- Approach, based on *m* out of *n* bootstrap, resamples shorter datasets, reducing computing cost and removes need for any additional data.
- Details: AP Hilbers, DJ Brayshaw, A Gandy (2020). Efficient quantification of the impact of demand and weather uncertainty in power system models. *IEEE Transactions on Power Systems.*