

Illustrative Prototype
for Home Energy Model Building Specification

Input Documentation

Version 1.0
12 September 2024

Chris Gordon-Smith

chris.gordon-smith@foe.co.uk

All original content in this document is © Chris Gordon-Smith
2024 and licensed under the Creative Commons Attribution
4.0 International license. The JSON code snippets are from
the UK Government’s Home Energy Model repository and are
licensed under the MIT License. The Friends of the Earth logo
is used with permission and remains the property of Friends
of the Earth.

mailto:chris.gordon-smith@foe.co.uk
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://dev.azure.com/BreGroup/_git/Home%20Energy%20Model?path=/README.md
https://opensource.org/license/MIT

Illustrative Prototype for HEM Building Specification Input Documentation

Page 2 of 24

Table of Contents
1. Introduction .. 3

1.1. Purpose of Document .. 3
1.2. Background .. 3
1.3. Motivation ... 3
1.4. Comments .. 3
1.5. Document Scope and Content ... 3
1.6. About the Author .. 4
1.7. Acknowledgements .. 4

2. Limitations of the Illustrative Prototype ... 4
2.1. Partial Scope ... 4
2.2. Illustrative Prototype is Based on Inferences .. 4

3. JSON Features in the HEM Building Specification Input .. 5
3.1. JSON Objects .. 5
3.2. Names ... 5
3.3. Values .. 5
3.4. Properties ... 5
3.5. Arrays .. 5
3.6. Example .. 5

4. Data Modelling Concepts and Graphical Conventions ... 5
4.1. Object Naming Types ... 6
4.2. Object Roles .. 6
4.3. Object Relationships ... 6
4.4. Graphical Conventions .. 6

4.4.1. Representation of Objects .. 6
4.4.2. Representation of Object Naming Type and Name / Role ... 6
4.4.3. Representation of Relationships ... 7
4.4.4. Representation of Cardinality ... 7
4.4.5. Arrays .. 7

4.5. Input Data Model vs HEM Internal Data Model ... 7
5. HEM Building Specification Input Structure and Content .. 8

5.1. ApplianceGains Sub-Hierarchy ... 9
5.1.1. ApplianceGains Object .. 11
5.1.2. appliance_gains_category object ... 11

5.2. ExternalConditions Sub-Hierarcy ... 13
5.2.1. ExternalConditions Object .. 15
5.2.2. shading_segments_item ... 16
5.2.3. shading_item .. 18

5.3. InternalGains Sub-Hierarchy .. 19
5.3.1. InternalGains Object ... 20
5.3.2. internal_gains_category .. 20

5.4. schedule (float) ... 21
5.5. SimulationTime Sub-Hierarchy ... 22

Appendix A: MIT License .. 24

Illustrative Prototype for HEM Building Specification Input Documentation

Page 3 of 24

1. Introduction
1.1. Purpose of Document
This document provides an Illustrative Prototype for documentation to describe the
Building Specification Input to the UK government’s Home Energy Model (HEM). This input
enables a user to set the various options and parameter values defining the characteristics
of the building(s) being modelled. A document describing how to set-up the input would,
in effect, be a “driver’s manual” for the Home Energy Model (in more technical language,
an input interface specification).

This Illustrative Prototype is not itself such a document. Instead, it provides an example of
the nature of material needed in such a document and a suggested approach to
structuring it. It is hoped that this will help towards the production of full documentation.

1.2. Background
In December 2023 the UK government published a consultation for the Home Energy
Model. The purpose was to “seek views on the new Home Energy Model which will replace
the Standard Assessment Procedure (SAP) for the energy rating of homes.”

Friends of the Earth responded to this consultation.1 The response was very favourable
overall, particularly on the open-source approach. However, it did raise concerns. These
were in two main areas, the use of the open-source code as the ultimate legal reference
for the HEM methodology, and some aspects of the approach to wrappers. These
concerns are documented in detail in the consultation response document. As part of
describing these concerns, the need for HEM core interface documentation was
highlighted.

1.3. Motivation
At Friends of the Earth we are exploring how the Home Energy Model might enable
development of a tool or tools to help inform our supporters and others on insulation and
heating options. The Illustrative Prototype has been produced as part of this activity. We
hope that it will also be useful as an example for others producing HEM documentation.

Any comments or other input on this document will be very welcome. This includes
comments on the inferences documented in Section 5 or answers to the questions
raised in that section.

Please send any input to chris.gordon-smith@foe.co.uk.

1.4. Document Scope and Content
This document focuses on the Building Specification Input2 for the Home Energy Model.
Weather data (EPW or CIBSE) can be input separately to HEM. These weather inputs are
not covered by this document. They can be download from publicly available websites.

The following outlines the content of this document:

1 The consultation response can be found in the Openmod Modelling Forum
2 The term building specification is used in the file hem.py in the Home Energy Model GitHub repository and
is also adopted here.

https://www.gov.uk/government/consultations/home-energy-model-replacement-for-the-standard-assessment-procedure-sap
https://www.gov.uk/government/consultations/home-energy-model-replacement-for-the-standard-assessment-procedure-sap
mailto:chris.gordon-smith@foe.co.uk
https://forum.openmod.org/t/uk-governments-home-energy-model-any-thoughts/4593/7

Illustrative Prototype for HEM Building Specification Input Documentation

Page 4 of 24

• Section 1 (this section) provides introductory material, including the
background, purpose of and motivation for the document.

• Section 2 identifies limitations of the Illustrative Prototype.
• Section 3 introduces the JSON (JavaScript Object Notation) format that is used

for the Building Specification Input.
• Section 4 describes data modelling concepts and graphical conventions used in

this document. The Building Specification Input is a large data structure
containing many objects and sub-objects. Data modelling techniques are used
to describe this structure using diagrams, tables and explanatory text.

• Section 5 is the core content. It shows the overall structure of objects in the
input and identifies the detailed properties (name/value pairs) of these objects.

• Appendix A: MIT License includes the MIT License, as is required for the MIT
Licensed material included in this document.

1.5. About the Author
Chris Gordon-Smith is a retired IT Professional with wide experience of IT including
system modelling, simulation and data modelling.

1.6. Acknowledgements
This document was created as part of volunteer activity with Friends of the Earth. The
author thanks Mike Childs and Toby Bridgeman at Friends of the Earth for their input and
support.

2. Limitations of the Illustrative Prototype
2.1. Partial Scope
In its current form the Illustrative Prototype covers five out of the eighteen top level
objects that make up the HEM Building Specification Input. There is much more to be
done!

2.2. Illustrative Prototype is Based on Inferences
There is currently no published documentation describing the Building Specification Input
interface. Therefore much of the material in this document has necessarily been inferred
from the HEM program code3 and the demonstration input (JSON) files. A certain amount
of ‘detective work’ is involved and it is often not possible to reach a definitive description
of a data item, or to be sure that assumptions made are correct. This document must be
read with this in mind. Much of it represents the author’s best guess about the input
options HEM provides and what it requires in the input. Comments on or corrections to the
assumptions will be very welcome.

3 Downloaded on 5 September 2024

Illustrative Prototype for HEM Building Specification Input Documentation

Page 5 of 24

3. JSON Features in the HEM Building
Specification Input

The HEM Building Specification Input is provided to the Home Energy Model as a JSON
(JavaScript Object Notation) formatted file. A useful introduction to JSON can be found on
the JSON website.4 The following outlines the main JSON features used in this document.

3.1. JSON Objects
The HEM Building Specification Input is formatted as a hierarchy of JSON objects. A JSON
object is an unordered set of name / value pairs.5 Its scope in the input is delimited by curly
braces. ‘{‘ denotes the start and ‘}’ denotes the end.

3.2. Names
A name is a string that identifies the value in a name/value pair. A string is a series of
characters enclosed in double quotes, e.g. “start_day”. Each name is followed by a colon
(‘:’) that separates it from its value.

3.3. Values
A value in the HEM Building Specification Input can be:

• A string in double quotes
• A number
• One of: true, false or null (unquoted)
• An object
• An array

3.4. Properties
Name/value pairs are also called properties.

3.5. Arrays
An array is an ordered collection of values. It is delimited by square brackets. It begins with
‘[‘ and ends with ‘]’. Values in the array are separated by commas (‘,’).

3.6. Example
Figure 3 shows an object named “ApplianceGains”. This contains two objects named
“lighting” and “cooking”. The “lighting” object has properties named “start_day”,
“time_series_step”, “gains_fraction”, “EnergySupply” and “schedule”. The value
associated with “schedule” is an object containing an array of numbers. The name of this
array is “main”.

4. Data Modelling Concepts and Graphical
Conventions

This section presents the data modelling concepts and graphical conventions used in
Section 5 to show the structure and content of the HEM Building Specification Input.
Attention is drawn to Object Naming Types and Object Roles which are introduced as a
means of distinguishing different kinds of object in the input.

4 See also Standard ECMA-404: The JSON Data Interchange Syntax
5 The term key is often used instead of name.

https://www.json.org/json-en.html
https://ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf

Illustrative Prototype for HEM Building Specification Input Documentation

Page 6 of 24

4.1. Object Naming Types
JSON objects in the input can be named in different ways as follows:

• HEM Named Object: This is the most common type of naming. The object must
be named according to the requirements of the HEM system

• User Named Object: These objects have names that must be assigned by the
user

• Anonymous Object: These objects do not have names

4.2. Object Roles
In the case of objects for which the name is not (yet) known (Anonymous Objects and User
Named Objects) it is useful to identify the object according to its role. An object’s role
indicates its purpose or responsibility in the context of the overall input structure.

4.3. Object Relationships
The HEM Building Specification Input includes a hierarchical structure in which lower-level
objects are part of (contained in) a higher-level object. Most of the relationships in the data
model are of this kind.

In some cases one object refers to another object without containing it. This indicates a
dependency or a works with relationship.

4.4. Graphical Conventions
The diagrams in this document use the following graphical conventions
4.4.1. Representation of Objects

A box represents a JSON object.6

4.4.2. Representation of Object Naming Type and Name / Role

Objects in the HEM Building Specification are named in different ways. The placing and
style of text in a box indicates the naming type:

• HEM Named Object: If a box has a text string in CapitalisedWords at the centre
(for example ApplianceGains in

• Figure 2) then the box denotes a HEM Named Object and the text string is its
name.

• User Named Object: If a box has a text string at the centre in italic snake case
(for example appliance_gains_category in

• Figure 2) then the box denotes a User Named Object and the text string is its
role. The actual name will be specified by the user.

• Anonymous Object: If a box has a text string in italic snake case at the top (eg
shading item in Figure 4) then it denotes an Anonymous Object and the text
string is the object’s role.

6 In strict data modelling terms it would be more correct to say that a box represents a class (or type) of object.
However, repeatedly making this distinction explicit could lead to cumbersome text and it is simpler to leave it
implicit. The meaning should be clear from the context. Where there is a need to refer to an actual object rather
than a class, the term object instance is used.

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case

Illustrative Prototype for HEM Building Specification Input Documentation

Page 7 of 24

4.4.3. Representation of Relationships

Relationships are represented by lines between the related objects. A line with a filled
diamond at one end indicates that the object at the other end is part of the object at the
diamond end. Looking at the relationship in the other direction, it can also be called
composition.

A dotted line with an arrow at one end indicates a dependency relationship in which an
object refers to the object at the arrowhead end.

4.4.4. Representation of Cardinality

At each end of a relationship there may be zero, one or more instances of each of the JSON
objects.7 This indicates the relationship’s cardinallty. A ‘1’ by an object indicates that there
is one and only one instance of the object related to an instance at the other end of the
relationship line. The text ‘0..1’ by an object indicates that there may or may not be an
instance of the object related to an object instance at the other end of the relationship line.
More generally, text such as ‘n..m’ (eg ‘8..36’) next to an object indicates that there must
be between n and m instances of the object related to an object instance at the other end
of the relationship line. ‘*’ is a wildcard meaning any positive number, so that ‘0..*’ next to
an object means that it may have any number of instances related to an object instance at
the other end of the relationship line, including zero.
4.4.5. Arrays

Arrays are not objects and are not explicitly shown on the diagrams. An array can be a
value within an object. The values within an array can often themselves be objects and in
such cases the array item objects are shown on the data model diagram. See for example
Figure 4: ExternalConditions Sub-Hierarchy.

4.5. Input Data Model vs HEM Internal Data Model
The data model diagrams in this document describes the structure of the data input to
HEM. In many cases this will be similar to the internal structure of the HEM system data.
However, it should be noted that there can be differences. For example, in the HEM
Building Specification Input, InternalGains and ApplianceGains are separate objects, but
in the HEM core (file project.py) ApplianceGains are added in to become part of the
InternalGains object.

7 See the footnote in Section A.4.4.1.

Illustrative Prototype for HEM Building Specification Input Documentation

Page 8 of 24

5. HEM Building Specification Input
Structure and Content

Figure 1 shows the top-level structure of the HEM Building Specification Input.
Diagram conventions are as explained in Section 4.

Figure 1: HEM Building Specification - Top Level Structure

The main structure is hierarchical, with a single HEM Building Specification Input
(anonymous) object at the top.8 This top-level object is composed of a set of sub-objects,
many of which have their own internal sub-hierarchies (shown below for some of the
objects). The object at the top of a hierarchy is called the root object. Figure 1 shows all of
the sub-objects in the level immediately below the single HEM Building Specification Input
root object.

In most cases the HEM Building Specification Input has exactly one sub-object of each
type. This is indicated by a number ‘1’ next to the sub-object. In three cases the text ‘0..1’

8 Technical Note: For diagram readability the relationship lines are merged. This is possible without loss of
information because they are all ‘part of’ relationships with a filled diamond at the HEM Building Specification
Input end.

Illustrative Prototype for HEM Building Specification Input Documentation

Page 9 of 24

appears instead of ‘1’. This means that the sub-object is optional. For example, the HEM
Building Specification Input object may or may not contain an OnSiteGeneration object.

The diagram also includes a schedule (float) object. This is outside the main hierarchy (it is
not part of any other object) but it is referred to by other objects (
Figure 2 shows an example of this).

The following sub-sections focus on the various (sub-)objects that make up the HEM
Building Specification Input object. In this Illustrative Prototype only a few of the sub-
objects are included. Each sub-section includes:

• A diagram showing the part of the overall hierarchy (the sub-hierarchy) focused on
the sub-object under consideration (the focus object)

• An example of JSON code providing input for the focus object. The code snippets
are from the file demo.json provided under the MIT License on the UK
Government’s Home Energy Model GitHub site. A copy of the MIT License is
included in Appendix A as required.

• Tables showing properties (name/value pairs) of the focus object and each of the
lower level objects in the sub-hierarchy. For each property the following are shown:

o Name
o Value type
o Example value(s)
o Number of occurrences of the property (related to cardinality)
o Notes

Ideally the tables would include column(s) stating the meanings and allowed values for all
data items in the input file. However, definitive information on this cannot be included
because although in many cases inferences can be made from the program code or
demonstration input, it is very often not possible to do so with certainty.9

A Notes column is however included in each table indicating what has been inferred so far
and raising questions. Examples include:

• Inference: The words “lighting” and “cooking” in the ApplianceGains input are
not keywords expected by HEM. They are user named categories of heat gains
from appliances in the building. They could be anything that the user condiders
appropriate.

• Question: The demonstration files show that allowed types for a shading_item
include “obstacle” in the case of the building as a whole, and “overhang” in the
case of a window. Can the HEM building as a whole have an overhang? Can a
HEM window have an obstacle?

Corrections to the inferences and answers to the questions will be very welcome (see
Section 0). Clarification on the value types will also be useful, particularly in cases where a
value could be either an integer or a floating point number.

5.1. ApplianceGains Sub-Hierarchy
The ApplianceGains sub-hierarchy can be used to specify heat input to the
dwelling from appliances.
Figure 2 shows the structure of the ApplianceGains hierarchy. Figure 3 shows
example JSON input for ApplianceGains.

9 The same applies to the Value type column that is included in each table.

https://dev.azure.com/BreGroup/_git/Home%20Energy%20Model?path=/test/demo_files/core/demo.json
https://dev.azure.com/BreGroup/Home%20Energy%20Model

Illustrative Prototype for HEM Building Specification Input Documentation

Page 10 of 24

Figure 2: ApplianceGains Sub-Hierarchy

Figure 2 shows that the ApplianceGains root object is at the top of the ApplianceGains
sub-hierarchy. This sub-hierarchy may include a number of user named
appliance_gains_category objects. Each of these specifies heat input in a
category such as lighting or cooking and must include a schedule(float) object
indicating how the heat input varies over time. An appliance_gains_category object must
also identify an EnergySupply object indicating the source of energy for appliances in the
category. The EnergySupply object is not part of the ApplianceGains hierarchy. It is a
separate independent object.

Figure 3: Example ApplianceGains input

Illustrative Prototype for HEM Building Specification Input Documentation

Page 11 of 24

5.1.1. ApplianceGains Object

An ApplianceGains object is a HEM Named Object that specifies the names of
appliance_gains_categorys, each of which is a type of appliance gain. Table 1 shows the
format and content of the ApplianceGains object.

Table 1: ApplianceGains object format and content

Name Value Type Num.
Occurrences

Example(s) Inferences and Questions

User defined name for a category
of appliance gains

appliance_gai
ns_category

0..* Typical names are:
“lighting”, “cooking”

Inference: Name is the
appliance_gains_category name. There
can be multiple categories and so this
property can be repeated for different
categories. The cardinality is accordingly
shown as 0..*.

5.1.2. appliance_gains_category object

An appliance_gains_category object is a User Named Object that specifies a particular
type of appliance heat gain. For example, heat gains associated with cooking. The object
includes a schedule (float) object specifying the amounts of heat provided at different
times. Table 2 shows the format and content of the object.

Table 2: appliance_gains_category object

Name Value Type Num.
Occurrences

Example Inferences and Questions

“start_day” int 1 0 Question: The file internal_gains.py says
“first day of the time series, day of the
year, 0 to 365 (single value)”. But what is
the time series?

“time_series_step” float 1 1

Illustrative Prototype for HEM Building Specification Input Documentation

Page 12 of 24

“gains_fraction” float 1 0.5

“EnergySupply” string 1 “mains elec” Inference: Identifies an
EnergySupply” object that appears in
the HEM Building Specification Input

“schedule” schedule(float
) object

1 See Section 5.4.

Illustrative Prototype for HEM Building Specification Input Documentation

 Page 13 of 24

5.2. ExternalConditions Sub-Hierarcy
The External Conditions sub-hierarchy specifies external conditions at the building
location. For example, external air temperatures, wind speeds, and shading.

Figure 4 shows the structure of the sub-hierarchy.

Figure 4: ExternalConditions Sub-Hierarchy

The ExternalConditions object includes a shading_segments array containing from 8 to
36 shading_segment_items. Each of these items is an object that identifies a segment of
the ground plane and may contain a shading array. If present, the shading array has one or
more shading_item objects, each of which specifies height and distance for a physical
object near the building.

Figure 5 shows example JSON input for ExternalConditions.

Illustrative Prototype for HEM Building Specification Input Documentation

 Page 14 of 24

Figure 5: Example ExternalConditions input

Illustrative Prototype for HEM Building Specification Input Documentation

 Page 15 of 24

5.2.1. ExternalConditions Object

An ExternalConditions object is a specifier for a range of environmental and other
conditions at the building. The object includes an array of
shading_segments_items. Table 3 shows the format and content of the object.

 Table 3: ExternalConditions Object

Name Value Type Num.
Occurrences

Example Notes

"air_temperatures" array[float] 1 [0.0, 2.5, 5.0, 7.5, 10.0, 12.5,
15.0, 20.0]

Inference: Assume that the number of
array entries is the number of hours
between “start” and “end” in the
Si,mulationTime object.

"wind_speeds" array[float] 1 [3.9, 3.8, 3.9, 4.1, 3.8, 4.2, 4.3,
4.1]

Ditto

"diffuse_horizontal_radiation" array[float] 1 [0, 0, 0, 0, 0, 0, 0, 0] Ditto

"direct_beam_radiation" array[float] 1 [0, 0, 0, 0, 0, 0, 0, 0] Ditto

"solar_reflectivity_of_ground" array[float] 1 [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2]

Ditto

"latitude" float 1 51.42

"longitude" float 1 -0.75

"timezone" int 0..1 0 Inference: Assume this is ignored. It
is set to 0 by the HEM code (See
__init__ function for the Project class)

"start_day" int 0..1 0 Inference: Assume ignored as for
“timezone”.
Question: The file
external_conditions.py says “first day
of the time series, day of the year, 0 to

Illustrative Prototype for HEM Building Specification Input Documentation

 Page 16 of 24

Name Value Type Num.
Occurrences

Example Notes

365 (single value)”. But what is the
time series? Is it related to weather?

"end_day" int 0..1 0 Inference: Assume ignored as for
“timezone”.

"time_series_step" float 0..1 1 Inference: Assume ignored as for
“timezone”.

"january_first" int 0..1 1 Inference: Assume ignored as for

“timezone”.

"daylight_savings" string 0..1 "not applicable" Inference: Assume ignored as for
“timezone”.

"leap_day_included" bool 0..1 false Inference: Assume ignored as for
“timezone”.

"direct_beam_conversion_neede
d"

bool 1 false

“shading_segments” array[shading_
segments
item],
size 8 to 36

1 See Figure 5 Inference: Num. occurrences is based on
comments in external_conditions.py.

5.2.2. shading_segments_item

A shading_segments_item is an object that specifies a segment of the ground
plane. If there are physical objects in the segment shading the building then
the shading_segments_item includes an array (named shading) that specifies
these physical objects.

Illustrative Prototype for HEM Building Specification Input Documentation

 Page 17 of 24

Table 4 shows the format and content of a shading_segments_item.

Table 4: shading_segments_item format and content

Name

Value Type Num.
Occurrences

Example Notes

”number” int 1 3

“start360” float (degrees) 1 90 Question: Is this a bearing from due North for
the start of the segment?

“end360” float (degrees) 1 135 Question: Is this a bearing from due North for
the end of the segment?

“shading” array[shading
item]

0..1

Illustrative Prototype for HEM Building Specification Input Documentation

 Page 18 of 24

5.2.3. shading_item

A shading item object specifies a physical object that produces shade. Table 5
shows its format and content.

Table 5: shading item format and content

Name Value Type Num.
Occurrences

Example Notes

“type” string 0..* “obstacle” Question: The
demonstration files
show that allowed
types for a
shading_item include
“obstacle” in the case
of the building as a
whole, and “overhang”
in the case of a
window.
Can the building as a
whole have an
overhang?
Can a window have an
obstacle?

“height” float 1 10.5
“distance” float 1 12

Illustrative Prototype for HEM Building Specification Input Documentation

Page 19 of 24

5.3. InternalGains Sub-Hierarchy
The InternalGains sub-hierarchy specifies heat gains from non-appliance
sources10 inside the building. Figure 6 shows the overall structure.
Figure 7 shows example JSON input for InternalGains.

Figure 6: InternalGains Sub-Hierarchy

Figure 7: Example InternalGains input

10 Heat gains from appliances are input separately in the “ApplianceGains” object. However, they are added
internally by the HEM into the InternalGains. Therefore within HEM, ApplianceGains become part of the
InternalGains object.

Illustrative Prototype for HEM Building Specification Input Documentation

 Page 20 of 24

5.3.1. InternalGains Object

An InternalGains object specifies the names of a set of internal_gains_categorys, each of
which is a type of internal gain. Table 6 shows its format and content.

Table 6: InternalGains object

5.3.2. internal_gains_category Object

An internal_gains_category object specifies a particular type of internal gain. For example,
metabolic gains associated with people in the building. The object includes a
schedule(float) object specifying the amounts of heat provided at different times. Table
7 shows the format and content of the object.

Table 7: internal_gains_category object

Name Value Type Num.
Occurrences

Example Notes

“start_day” integer 1 0 Question: File internal_gains.py says that
this is the “start of the time series”. What
data series does this refer to?

“time_series_step” integer 1 1 Question: File internal_gains.py says that
this is the timestep of the time series data
in hours. Must the number of hours be an
extact number of days?
Question: How does this relate to

Name Value Type Num.
Occurrences

Example Notes

User defined name (in double
quotes) for a category of
internal gains.

internal_gains
_ category

0..* “metabolic gains” Inference: “metabolic gains” is a user
assigned name for a category of internal
gains.

Illustrative Prototype for HEM Building Specification Input Documentation

 Page 21 of 24

time_series_step in ApplianceGains? Can
the two be different?

“schedule” schedule(float
) object

1 See Section 5.4 Question: How does this relate to the
“schedule” in the ApplianceGains object.
Must the two time series be aligned, or
can they each have a different set of
times?

5.4. schedule (float)
A schedule (float) is an object containing a set of floating point values associated with a
series of times. This object can be used in multiple places in the HEM Building
Specification Input object hierarchy.

Table 3.8: schedule (float)

Name Value Type Num.
Occurrrences

Example Notes

“main” array[float] 1 [88, 200, 184, 376, 576,
544, 728, 608]

Inference: HEM provides generic
capability for schedule data structures to
be held internally. However, the schedule
objects in the HEM Building Specification
Input covered by this document always
use the ‘float’ schedule type and
represent only the ’main’ schedule. See
schedule.py and project.py.

llustrative Prototype for HEM Building Specification Input Documentation

 Page 22 of 24

5.5. SimulationTime Sub-Hierarchy
The SimulationTime sub-hierarchy specifies simulation time-stepping
requirements. Figure 8 shows its relationship with the HEM Building Specification
Input object. Figure 9 shows example JSON input for the SimulationTime object.
Table 8 shows its format and content.

Figure 8: SimulationTime sub-hierarchy

Figure 9: Example SimulationTime input

llustrative Prototype for HEM Building Specification Input Documentation

 Page 23 of 24

Table 8: SimulationTime object

Name Value Type Num.
Occurrences

Example Notes

“start” float 1 0 Inference: This maps to starttime in the
HEM internal SimulationTime object.

“end” float 1 8 Inference: This maps to endtime in the
HEM internal SimulationTime object.

“step” float 1 1

Illustrative Prototype for HEM Building Specification Input Documentation

 Page 24 of 24

 Appendix A: MIT License
The JSON code snippets in this document are from the UK Government’s Home
Energy Model published under the MIT License. The license text is included below.

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

https://dev.azure.com/BreGroup/_git/Home%20Energy%20Model?path=/test/demo_files/core/demo.json
https://dev.azure.com/BreGroup/_git/Home%20Energy%20Model?path=/test/demo_files/core/demo.json

