
Production Cost Modeling with

Clayton Barrows,
National Renewable Energy Lab,

This work is licensed under a
.

PowerSimulations.jl

clayton.barrows@nrel.gov

Creative Commons Attribution 4.0
International License

https://github.com/nrel-siip/PowerSimulations.jl
mailto:clayton.barrows@nrel.gov
http://creativecommons.org/licenses/by/4.0/

Introduction
PowerSimulations.jl supports simulations that consist of sequential
optimization problems where results from previous problems inform
subsequent problems. Otherwise known as production cost modeling.
Additionally, several PowerSimulations.jl supports several other types
of power system simulations:

Dependencies

Dependencies
In [17]: using SIIPExamples

using PowerSystems
using PowerSimulations
using Xpress
solver = optimizer_with_attributes(Xpress.Optimizer, "MIPRELSTOP" => 0.05, "OUTPU
using PowerGraphics

1
2
3
4
5
6

Data
PowerSystems.jl supports parsers for a few standard power system
data formats:

MATPOWER

PTI network �les in the .raw format that follow the PSS(R)E v33

Tabular data (CSV)

The is published as a set of .csv �les. So we can use the
tabular data parsing support of PowerSystems.jl to read it.

RTS-GMLC

https://github.com/gridmod/rts-gmlc

In [5]:

Out[5]:

System
Base Power: 100.0

Components
Num components: 434

15 rows × 3 columns

ConcreteType SuperTypes Count

String String Int64

1 Area
AggregationTopology <: Topology <: Component <: PowerSystemType <:
InfrastructureSystemsType <: Any

3

2 Bus
Topology <: Component <: PowerSystemType <: InfrastructureSystemsType <:
Any

73

3 GenericBattery
Storage <: StaticInjection <: Device <: Component <: PowerSystemType <:
InfrastructureSystemsType <: Any

1

4 HVDCLine
DCBranch <: Branch <: Device <: Component <: PowerSystemType <:
InfrastructureSystemsType <: Any

1

load_rts();
sys

1
2

Production Cost Modeling
PowerSimulations.jl is designed to �exibly build and execute sequential
optimization problems. This example shows a straightforward
representation of a day-ahead market clearing simulation with unit
commitment. More complex examples are available in SIIPExamples.jl

https://github.com/nrel-siip/siipexamples.jl

De�ne the problem formulation
First, we need to de�ne how to represent each device type in the
System using an OperationsProblemTemplate :

De�ne the problem formulation
First, we need to de�ne how to represent each device type in the
System using an OperationsProblemTemplate :

In [7]:

Out[7]:
Operations Problem Specification
==

 transmission: DCPPowerModel
==
 devices:
 ILoads:
 device_type = InterruptibleLoad
 formulation = InterruptiblePowerLoad
 HydroROR:
 device_type = HydroDispatch
 formulation = HydroFixed

uc_template = make_uc_template(network = DCPPowerModel)1

De�ne the day-ahead market model
A Stage de�nes a model using the

OperationsProblemTemplate and the System data.

Users can create any number of Stages along with control over

how information �ows inter and intra stage executions.

De�ne the day-ahead market model
A Stage de�nes a model using the

OperationsProblemTemplate and the System data.

Users can create any number of Stages along with control over

how information �ows inter and intra stage executions.

In [8]:

Out[8]: Dict{String,Stage{UnitCommitmentProblem}} with 1 entry:
 "UC" => Stage()…

stage_def = Dict("UC" => Stage(UnitCommitmentProblem, uc_template, sys, solver))1

Sequencing
The stage problem length, look-ahead, and other details surrounding
the temporal sequencing of stages are controlled using the order ,

horizons , and intervals arguments.

order::Dict(Int, String) : the hierarchical order of stages in the

simulation

horizons::Dict(String, Int) : de�nes the number of time periods in

each stage (problem length)

intervals::Dict(String, Dates.Period) : de�nes the interval with

which stage problems advance after each execution

Sequencing
The stage problem length, look-ahead, and other details surrounding
the temporal sequencing of stages are controlled using the order ,

horizons , and intervals arguments.

order::Dict(Int, String) : the hierarchical order of stages in the

simulation

horizons::Dict(String, Int) : de�nes the number of time periods in

each stage (problem length)

intervals::Dict(String, Dates.Period) : de�nes the interval with

which stage problems advance after each execution

Simulation

Now, we can build and execute a simulation using the
SimulationSequence and Stage s that we've de�ned.

Simulation

Now, we can build and execute a simulation using the
SimulationSequence and Stage s that we've de�ned.

In [10]: sim = Simulation(name = "rts-test",
 steps = 2,
 stages = stage_def,
 stages_sequence = DA_sequence,
 simulation_folder = rts_dir,
 initial_time = Dates.DateTime("2020-04-07T00:00:00"))
build!(sim)

1
2
3
4
5
6
7

Execute simulation

Execute simulation
In [11]:

Executing Step 1
Executing Step 2
Welcome to the CBC MILP Solver
Version: 2.10.3
Build Date: Oct 7 2019

command line - Cbc_C_Interface -ratioGap 0.5 -logLevel 1 -solve -quit (default
strategy 1)
ratioGap was changed from 0 to 0.5
Continuous objective value is 1.36059e+06 - 0.73 seconds
Cgl0004I processed model has 12968 rows, 26800 columns (5314 integer (5314 of w
hich binary)) and 62564 elements
Cbc0045I Trying just fixing integer variables (and fixingish SOS).
Cbc0045I MIPStart solution provided values for 9060 of 5314 integer variables,
139 variables are still fractional.
Cbc0038I Full problem 12968 rows 26800 columns, reduced to 12968 rows 26800 col
umns - too large
Cbc0045I Mini branch and bound defined values for remaining variables in 0.11 s
econds.
b 0045 id d l i i h 1 79769 308

sim_results = execute!(sim)1

Analysis
PowerSimulations.jl natively populates simulation results in a struct of
DataFrames.

Analysis
PowerSimulations.jl natively populates simulation results in a struct of
DataFrames.

In [12]:

Out[12]:

Results
P__ThermalStandard

48 rows × 77 columns (omitted printing of 70 columns)

Time 322_CT_6 321_CC_1 202_STEAM_3 315_STEAM_1 223_CT_4 123_STEAM_2

DateTime Float64 Float64 Float64 Float64 Float64 Float64

1 2020-04-07T00:00:00 0.0 1.7 0.3 0.0 0.0 0.62

2 2020-04-07T01:00:00 0.0 1.7 0.3 0.0 0.0 0.62

3 2020-04-07T02:00:00 0.0 1.7 0.3 0.0 0.0 0.62

uc_results = load_simulation_results(sim_results, "UC")1

Plotting
The (new) package has some standard plotting
capabilitites based on the results produduced by PowerSimulations.jl

PowerGraphics.jl

https://github.com/nrel-siip/powergraphics.jl

Plotting
The (new) package has some standard plotting
capabilitites based on the results produduced by PowerSimulations.jl

PowerGraphics.jl

In [16]: fuel_plot(uc_results, sys)1

https://github.com/nrel-siip/powergraphics.jl

What's Next?

