Modelling Price Outcomes in the Australian NEM

Comparing Nodal and Zonal Market

Models in PyPSA

Tom Adams, PyPSA user meeting 2025

Purpose

• Explainable week ahead prices in terms of:

- Generator energy bids (not SRMC!)
- Weather, wind and solar output
- Demand
- Plant outages
- Line outages

Why use PyPSA at all?

1st May 2023

Why use PyPSA at all?

Out of sample events are happening all the time – generators closing, opening, new lines being added, lines being taken out for maintenance etc.

What about GNNs?

Train simple graph network on price data with (2,5) and (1,4) out, infer impacts of (3,6) and (3,8) outages

- Works on simple cases
- In reality taking one line out is such a small change to the overall network configuration it tends to get lost in the convolution

PyPSA inputs

- Bidstacks model predicts power offers in 10 bands per gen
- Other models for upcoming plant and line outages, demand, uncurtailed wind and solar output
- Feed these stochastic inputs into a deterministic PyPSA market dispatch model

Nodal or zonal?

NZ

Nodal: 216 nodes, one for each substation

Zonal

Nodal

Zonal	Nodal
Fast to solve (1 week @30min resolution in 3 minutes)	Slower to solve (1 week @30min resolution in 15 minutes)
Looks more like the market operator's model (NEMDE)	Can handle new scenarios, such as new lines or new line outages
Constraints supplied by market operator	Implicit n-1 thermal constraints
RHSs calculated statistically	RHSs calculated implicitly
Little network information required	Detailed network information required
High level perspective	Can dig into power flow

•Zonal:

- Fast and accurate (depending on inputs)
- Good for day-to-day decision making
- Can be rerun quickly if something changes
- Can be run several times for probabilistic results
- Only uses PyPSA for data handling and solver
- Requires building constraints manually, and tweaks to objective function

Nodal

- Good for really digging into tricky problems
- Great if no constraint exists, e.g. lines down in storm
- Good when statistical RHSs can't be trusted
- Uses PyPSA extensively, data handling with xarray, calculate constraints, solver.

Questions?