

Tim Graulich, DTU, Muessli Project

Machine Learning based surrogate models for large-scale sector-coupled energy systems

Background and Motivation

- Sector coupling is expected to help increase the integration of variable renewable energy sources and the energy systems overall efficiency
- Sector coupling increases exchange capacities, storage capacities, electricity demand, hydrogen technologies and demand flexibility

DTU

Machine Learning based surrogate models

Build surrogate models from existing energy models to capture functionality while reducing computation times

Outlook/Ideas

- Bayesian Learning:
 - Get uncertainty estimates for surrogate model outputs to perform hybrid linking

Constraint Learning:

- Include energy model constraints in learning process (e.g. Lagrangian Dual methods)
- Speed up training process
- Ensure outputs fulfill constraints

Graph Neural Networks:

- Capture network structure of energy systems