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Why do we need weather and climate data?

In order to meet government targets power systems are becoming increasingly weather-dependent
This weather-dependence results in increases power system variability on numerous timescales from seconds-

decades

Energy systems are rapidly changing to meet climate mitigation targets, so metered data contains large trends, and past
years data are less useful.

Year to year variations in weather can cause large differences in power system modelling results.
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Conversion to energy models

Gridded weather and climate data can be converted into energy variables using statistical or physical
models.

Generally the power system setup is fixed (e.g. 2020/2050 levels of demand/wind/solar) and many
years of weather are passed through models.

Hourly gridded meteorological variables

2m 100m wind 2m Surface Shortwave
Temperature speed Temperature Radiation

Multiple linear Physical wind Empirical solar
regression model power model power model

Hourly national Energy variables
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Demand modelling

Demand over Europe is predominantly dependent on near surface temperatures (other factors may include near-
surface wind speeds, cloud cover etc).

Heating Degree Days (HD) and Cooling Degree Days (CD) are a common metric for measuring temperature sensitivity
There are both weather-dependent influences and human-induced factors (e.g. long-term trends, day of the week).
Demand models include both of these factors and generally use a statistical technique (e.g. regression).
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Wind Power modelling

Wind Power models are based on the non-linear relationship between wind speed and wind power.
Gridded wind speeds are required at turbine hub-height (~100m)

If the locations of wind turbines are known then the gridded wind power output can be calculated,
or aggregated over larger regions (e.g. national level).
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Solar PV modeling

Global Horizontal Irradiance is the main meteorological component required for a solar power model.

Information about direct and diffuse components of solar radiation may be required, as well as local
temperatures, solar zenith angles and operational characteristics of the chosen solar PV system

Physical modelling technigues tend to need more information about local conditions than statistical or
empirical solar modelling techniques.

relative efficiency factor Irradiance
Irradiance on panel (Wm~?)
il 0°C
e 5°C
Power osy S
CF = 5—-= 1ra(G, T)c_ Bosl —
STC STC - e
.l
_§ N
8021
Nret(G.T) = e[ 1— Br(Te — T, )]

0.0-
0 200 400 600 800 1000 1200
Irradiance on panel (Wm™2)
efficiency at %] University of g}
ency y . S2S4E

A
reference temp decrease in e reference temp Read|ng 2 ¢

per unit temp
See Bloomfield et al., (2020) and Bett and Thornton (2016) for further details

Climate Services

cell temperature
for Clean Energy




(©MOoM

o S2S4E

% ‘ Climate Services
for Clean Energy



(OMOM

Challenges in demand/wind/solar PV modelling

Demand

Statistical models are
dependent on the quality of the
training data

All countries have varying
levels of weather-dependence,
based on power system
composition

Contribution of human and
weather factors means that
unpacking the various
components is complex

Wind Power

Calibration of the underlying climate
data is very important.

Biases in the wind speed distribution
can lead to large errors in wind power

When looking at future climate
simulations or S2S forecasts you are
unlikely to have high resolution data

Wind power generation can be
impacted by factors “outside the
physical model control” e.g. grid
stability issues and the need for wind
power curtailment

Solar Power

There are only very poor records of
where solar power generation is
located

A lot of solar/wind models based on
the physics of individual panels not
aggregated over areas
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Wind Power modelling Challenges

Calibration of the underlying climate data is very important.
Biases in the wind speed distribution can lead to large errors in wind power output
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Wind Power modelling Challenges

Calibration of the underlying climate data is very important.
Biases in the wind speed distribution can lead to large errors in wind power output
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Examples of available climate data

A list of currently available datasets (all open access) is currently hosted
on the opened forum.

Historical period

open ener : , :
@ B@)e n m @@ﬂ m‘:,de||ing?,¥itiaﬁve Datasets based on “observed climate” (weather stations, satellite, reanalyses, etc.).

Electricity demand

i i . . . Spat. Time climate data
N t P D dat URL
Freely available datasets of energy variables ame  Unit  Period Domain P MW SEE TR updates
Open data ECMWE
C3S Energy, 1979- . Copernicus
\) Mmatteodefelice 6 21d Operational Power present Europe  Country daily  ERAS License es C3SC
1.0
Climate reanalysis datasets ECMWF
Energy, 1979- . ERA- Copernicus .
(a version of this page is also available on github 1) ECEM Power 201g Curope  Country dailly o NO http://e
This page contains a list of all the freely available datasets of energy variables (electricity demand, 1.0
wind/solar/hydro-power) reconstructions based on climate reanalysis or climate change projections. 1990- https:/,
JRC 2020 Power 2015 Europe Country hourly ERAS5 CCBY4.0 no 98c0.é
The list is a work-in-progress, please reply to this post if you want to add a dataset or suggest a UREAD o
ion. 1980-
correction Energy Power 2018 Europe Country Hourly MERRA2 Attributions no http://c
Reanalysis 4.0
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Renewables Ninja (wind and solar) s
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J_ Renewables.ninja
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Select a year of data ©
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3 hourl csV License: Creative Commons Attribution-NonCommercial
ave hourly output as Citation: Staffell and Pfenninger (2016)

U Include raw data

Tick this box to include additional columns with the underlying
weather data used in the model, rather than just the model output
itself. Raw weather data is included in the downloadable output
file but not visualized in the web application.
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ECEM: demand, wind solar
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tealtool.earth ECEM education tool
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UREAD: demand, wind, solar

Dataset

Bloomfield, Hannah, Brayshaw, David and Charlton-Perez, Andrew (2020): ERAS derived time series of European country-aggregate electricity demand,
wind power generation and solar power generation. University of Reading. Dataset. http://dx.doi.org/10.17864/1947.273

https :/ / researCh L read I ng L ac L u k./m et-en erg.y Bloomfield, Hannah, Brayshaw, David and Charlton-Perez, Andrew (2020): ERAS derived time series of European country-aggregate electricity demand,

wind power generation and solar power generation: hourly data from 1979-2019. University of Reading. Dataset.
https://researchdata.reading.ac.uk/id/eprint/272

University of Reading

About

Browse Statistics

ERAS5 derived time series of European country-aggregate electricity
demand, wind power generation and solar power generation

How to cite this Dataset

Copy
Bloomfield, Hannah, Brayshaw, David and Charlton-Perez, Andrew (2020): ERAS5 derived

time series of European country-aggregate electricity demand, wind power generation and
solar power generation. University of Reading. Dataset. http://dx.doi.org/10.17864/1947.273

This is the latest version of this item.
Description

The ERAS reanalysis data (1979-2018) has been used to calculate the three-hourly country
aggregated wind and solar power generation for 28 European countries based on a distribution

of wind and solar farms which is considered to be representative of the current situation (2017).

In addition a corresponding daily time series of nationally aggregated electricity demand is
provided. The datasets have been produced to investigate the inter-annual variability of the
three weather-dependent power system components.

** This is an update on the previous version of the data where there were issues with the
timestamps in the 3-hourly wind and solar power data. **

Resource Type: Dataset

. Bloomfield, Hannah © =, Brayshaw, David and
Creators: Charlton-Perez, Andrew
Rights-holders: University of Reading

Research Data Archive

Bloomfield, Hannah, Brayshaw, David and Charlton-Perez, Andrew (2020): MERRAZ2 derived time series of European country-aggregate electricity
demand, wind power generation and solar power generation. University of Reading. Dataset. http://dx.doi.org/10.17864/1947.239

Gonzalez, Paula, Bloomfield, Hannah, Brayshaw, David and Charlton-Perez, Andrew (2020): Sub-seasonal forecasts of European electricity demand,
wind power and solar power generation. University of Reading. Dataset. https://researchdata.reading.ac.uk/id/eprint/275

Drew, Daniel, Bloomfield, Hannah, Coker, Phil, Barlow, Janet and Brayshaw, David (2019): MERRA derived hourly time series of GB-aggregated wind
power, solar power and demand. University of Reading. Dataset. http://dx.doi.org/10.17864/1947.191

Data Cite XML v
Reanalysis (MERRA2, ERAS)

Forecasts (ECMWF, NCEP)

Full Archive

ERA5_energy_update.zip

Related CentAUR publications

Characterizing_the winter meteorological drivers of
theEuropean electricity system using_targeted
circulationtypes

Meteorological drivers of European power system
stress

Statistics

°.°- Loading...

) Universityof B8 S2S4E
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Understand Present/potential power system variability

How might GB
baseload capacity
reduce in a future
power system with
more wind power

generation?

How might annual-
mean CF change
with increasing
installed WP cap?
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Understand Present/potential power system variability

April 2014 (10.2 GW) The Future (~50 GW)

How might GB

How might annual- o baseload capacity
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installed WP cap? more wind power
generation?
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Understand Present/potential power system variability

April 2014 (10.2 GW)

What weather
conditions could
cause the most
power system
stress?

Bloomfield et al., (2020)

The Future (~50 GW)
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Predict future power system behaviour

Are any of these
characteristics
predictable?

days 5-11

days 12-18

Pass (calibrated!) forecast data through the
models described earlier

UREAD have published datasets of European
Demand, Wind Power, Solar Power hindcasts
from 1996-2016 for 2 sub-seasonal models
(ECMWF and NCEP, ~40 day forecasts)

Good skill seen in week 1 (days 5-11) useful
skill still present at longer lead times

days 19-25

days 26-31

v oY o __-‘
W . v N
i > % W,

Data: Gonzalez et al., (2020) ~0.8 -0.4 0.0 0.4 0.8

Description: Bloomfield et al., (in review), contact for a copy Skill scores
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Using weather patterns to forecast energy variables

Weather regimes. Targeted Circulation Types.

Patterns based on large scale, upper Constructed using k-means clustering of

atmospheric meteorological data. principal components of European power
. . system data.

Constructed using k-means clustering of

principal components of the gridded data. Better relationship to system of interest than
traditional’ weather regimes.

(b) NAG- Blocked (BL) Zonal (ZL)

(c) ScBl

European Trough (EuTr)

(d) -

ZZ:;E£‘5$\‘; £
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Cassou (2008) gh500 anomaly (m)

Bloomfield et al (2020) Demand anomalies



A recent S2S4E webinar Exploring methods to forecast national energy variables at B - Reading
survey showed pattern sub-seasonal to seasonal timescales

Department of Meteoralogy, University of Reading, RGOS §AH
Email: he.bloomfield @ reading ac uk

m eth Od S a re CO mm O N Iy Hannah Bloomfield | David Brayshaw | Andrew Charlton-Perez | Paula Gonzalez S
U Sed | n th e e n e rgy | n d U Stry Motlvatlon Results Comparison between patterns and grid point hindcasts

t f t PMm based methods have the potential to increase the skill of energy forecasts at sub-seasonal timescales A recent E week 0 week 1 week 2
O O re Ca S . S2S4E webinar survey found that 60 of users were either using pattern based methods In their work or arevery . .

*  open to using them. We therefore investigate two pattern based methods: weather regimes (WRs, Cassou, 2008) and
«  Targeted Circulation Types (TCTs, Bloomfield et al., 2020) and compare to traditional ‘grid point based' forecasts of .

Patterns have the potential . euopm sy i :
to provide enhanced skKill Methods

Key Points:

’ : ' > ’ ; -There is high skill in the grid point
based forecasts in a number of
fLJ s A forecast metrics. This skill starts to

Gridpoint

mz-mmmmmmmmwownm

compared to grid point T —

"l westhervariabies: P> Demind, wind power e oL emf Inking TCT occurrence 0 energy Phyucally based
2m Tempersture and solar power - resporae

based forecasts 1= wesailsegl)=—"

drop below useful levels in week 2
% Qg - At all lead times pattern based skill is
less than grid point skill
- TCTs provide a better prediction of
- fLJ / demand than WRs due to their
reght P based on 2500 rhng WR cccurrence 1o ererpy ﬁ
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European weather regimes, L R Mt L 0wkt wek: e

Or TCTS) Compare tO USIHQ éPatternAssignment
the grid point forecast data.

variables (see pattern assignment
section)

Visit the poster later for

more details about this.

fLJ 0

— — TCT §Results: Windows of opportunities in grid point hindcasts

- In week 0 there is no significant
gain through conditioning the
demand forecasts based on a
dominant pattern in the ensemble

- In weeks 1 and 2 significantly
increased skill is seen when grid
point forecasts with a dominant
pattern are compared to all
forecasts.

- Skill gains are similar for dominant
threshold of 5 - 9 ensemble

France ) France
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Summary

Gridded meteorological datasets from weather forecast models,

reanalysis and climate model simulations can all be converted into
weather-dependent power system components.

A number of datasets exist for open-access use which have
completed this conversion and published methods.

These datasets are useful to answer a number of research

guestions associated with the weather-dependent uncertainty in
power system modelling.

Increased collaboration between the energy and meteorology

communities can help tackle future research questions about
weather-dependent power system behaviour.
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