PYPSA-PL: SECTORALLY COUPLED ENERGY MODEL TO INFORM POLISH ENERGY POLICY

Patryk Kubiczek, Michał Smoleń, Wojciech Żelisko

Instrat, Warsaw, Poland

patryk.kubiczek@instrat.pl

Motivation

- Poland is currently in the process of updating its **National Energy and Climate Plan** and shaping its official **energy policy until 2040**.
- To inform the ongoing public debate regarding the feasible energy transition pace and the achievable emission reduction targets, Instrat (Warsaw-based think tank) expanded its in-house **power system model PyPSA-PL** by **heating, mobility, and hydrogen sectors**.

Model and data

• In our most recent analysis [3], we focused on sectors with energy use of fossil fuels, which are responsible for around 75% of Poland's current GHG emissions. The PyPSA-PL

Results and recommendations

Annual electricity generation mix in Poland [%] – 2022 and 2040

model [4] directly covers sectors responsible for 60% of Poland's GHG emissions.

Energy flows in PyPSA-PL v2.1 model

• We compiled an extensive dataset on infrastructure, energy consumption, fuel prices, and technology costs **tailored for the Polish energy system**.

 We attribute the same cost to all CO₂ emissions following a predefined carbon pricing pathway.

 CO2 prices [EUR'2022/tCO2]

 2020
 2025
 2030
 2035
 2040

Average electricity mix in extreme hours [GW] – S1: RES+NUC, 2040 GW

- Wind and solar dominate the 2040 electricity production mix in all scenarios. The faster the RES deployment, the faster the cost-effective decarbonisation and electrification of the economy.
- Nuclear may be part of a cost-effective electricity mix in 2040 – but not its pillar. However, nuclear units could provide carbon-free synchronous baseload power if it is still required by 2040.
- Even though widespread use of decentralised heat pumps is cost-effective, it will increase peak residual power demand. This will drive the need for rarely used firm capacities, such as new hydrogen-fired generators or retrofitted coal-fired backup units.
- Flexible electricity consumption by heating, mobility, and hydrogen sectors are key to making good use of solar and wind energy. The peak electricity generation might be as high as **80 GW**, which is 2.8 times higher than the historical maximum load in the Polish grid – local consumption will be helpful.

- 30 103 139 159 180
- To account for the current reliance of the Polish power system on the ancillary services provided by conventional power plants, we apply a constraint on the maximum hourly **System Non-Synchronous Penetration (SNSP)** concept developed by TSOs in Ireland.
- For each of the modelled 5-year period, we sequentially search for a solution satisfying energy carrier demands (see section *Modelled scenarios*) throughout **8760 hours** at the lowest annual **CAPEX and OPEX costs**.

• Ambitious RES scenarios (S1 & S2) lead to **lowest GHG emissions** (65-70% reduction by 2040 vs. 2020 value) and **lowest systemic costs**. However, we do not model the grid expansion – including its cost would likely decrease systemic cost differences between scenarios.

Modelled scenarios

S1: RES+NUC

Ambitious RES and nuclear power deployment scenario: fast deployment of RES and nuclear possible; high electricity demand; low heating and mobility demand; high SNSP permitted.

S3: BASE

Baseline scenario: deployment of RES up to unofficial Ministry of Climate forecast possible; nuclear as fast as S1; medium electricity, mobility, and heating demand; medium SNSP permitted.

S2: RES

Ambitious RES deployment scenario w/o nuclear power: fast deployment of RES possible; no nuclear; high electricity demand; low heating and mobility demand; high SNSP permitted.

S4: SLOW

Slow transition scenario: delayed deployment of RES and nuclear; low electricity demand; high heating and mobility demand; low SNSP permitted.

• Differences in final use carrier demand improve **scenario self-consistency** (e.g., the abundance of RES enables far-reaching electrification of industry, which increases electricity demand), but they also make scenario comparison more nuanced.

Policy impact

• Our three 2023 modelling-based reports [1–3] gained significant **national and international media coverage**; the findings of *Poland approaching carbon neutrality* report [3] were cited by Bloomberg [5].

generation

Baseload power Modelling the costs of low flexibility of the Polish power system

Poland approaching carbon neutrality Four scenarios for the Polish energy transition until 2040

Assumed final use demand for electricity and heat [TWh]

Electricity							Heat					
Scenario	2020	2025	2030	2035	2040	Scenario	2020	2025	2030	2035	2040	
S1 & S2	159.4	168.3	177.2	190.3	202.0	S1 & S2	227.1	224.4	221.8	192.9	169.6	
S 3	159.4	168.3	177.2	187.4	196.9	S 3	227.1	224.4	221.8	203.5	187.5	
S 4	159.4	168.3	177.2	184.1	190.9	S 4	227.1	224.4	221.8	218.6	215.6	

- The Civic Coalition (a political alliance ruling currently in Poland), in its energy program for the 2023 parliamentary election, **adopted Instrat's recommendations for the 2030 RES target** from *Poland cannot afford medium ambitions* report [1].
- The current CEO of **the Polish TSO** (PSE) in his communication **refers to Instrat's modelling** indicating it as a useful resource in the context of grid development planning.
- PyPSA-PL is the only optimisation-based model of the Polish energy system which is **open source** and whose inputs and outputs are **open access** which, we believe, enhances its impact.

