

Modelling an electricity-and-heat coupled system Should the heat production be diluted or non-diluted?

What are we talking about?

- Individual and district heating mixes are currently non-diluted
- Energy models do not systematically take this constraint into account
- Allowing the dilution offers a wider scope of possibilities ...
- ... but prevents an accurate cost calculation of the thermal system

→ It is confusing ... What should we do?

Let's assess if the non-dilution affects the results at all

Methodology:

- Created a heat-and-electricity "toy" cost optimisation model (sizing & dispatch MILP)
- Run the model over one year at an hourly resolution
- Observed the differences

What we observed – when applying the non-dilution constraint

→ District heating becomes **less competitive** because it loses its short-term flexibility to address any heat demand

Injected heat (GW) from the district heating during one year (hours)

What we observed – when applying the non-dilution constraint

→ The thermal energy storage is greatly impacted

- Less discharge capacity (- 15 %)
- Greater storage capacity (+ 60 %)
- Change of behaviour (less charge-and-discharge cycle, more energy stored on longer periods

State of charge (TWh) of the thermal energy storage during one year (hours)

Lukas Hofmann

To dilute or not to dilute?

To not dilute!

Diluting individual and centralized mixes gives wrong district heating competitiveness and wrong thermal storage behaviour

Next step:

What about the dilution between the individual heating devices?

Thank you!

Presenter:

Lukas Hofmann
PhD student (2nd year)
CEA/DES/ITESE
lukas.hofmann@cea.fr

PhD supervisors:

Arthur Clerjon – <u>arthur.clerjon@cea.fr</u>
Philippe Azaïs – <u>philippe.azais@cea.fr</u>
Fabien Perdu – <u>fabien.perdu@cea.fr</u>
Roland Bavière – <u>roland.baviere@cea.fr</u>