Modelling of heat pumps for the decarbonisation of district heat
Gerhard Totschnig - AIT Austrian Institute of Technology

Heat pumps are very interesting technology options for decarbonizing the district heat

Impact of smart heat pump operation:

- Geothermal energy output can be increased by reducing the injection temperature with a heat pump → increased economics
- Increasing the storage capacity of seasonal storages (factor >2)
- Smart operation of heat pump leads to high COPs and higher utilization factors → better economics

Modelling ideas:

- If heat pump hast to supply the full district heat supply temperature (often larger than 80° - 100°C) → bad COP and low utilization factor → bad economics
- Modelling with hourly variable power price
 - If power price is medium, use the heat pump with high COP. E.g. to:
 - Reheat the seasonal storage to medium temperature
 - Reheat district heat return flow by 10°C and provide the boost with other technology
 - If power price is very low, COP is not that important → boost the temperature level to the full DH supply temperature

Modelling Implementation:

- Model one heat pump with different operation modes
- Linear model which avoids overbooking of the capacity
 \[\sum_{i \in HP\ modes} \frac{MW_{e}c_{-}HP\ -Mode_{i}(t)}{capacityOf\ Mode_{i}} \leq 1 \]
- Model (seasonal-) heat storage with multiple temperature levels

Provide only mid temperature levels with HP when power price not low → good COP
boost temperature later or with other technology:

Diese Präsentation erstand im Rahmen des IEA ECES Task 35. Dieses Projekt wird im Rahmen der IEA-Forschungskooperation im Auftrag des Bundesministeriums für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie durchgeführt.

Contact: Gerhard.Totschnig@ait.ac.at
Competence Unit Integrated Energy Systems (IES)
AIT Austrian Institute of Technology GmbH