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Review and introduction
u From previous speakers, climate variability has a significant impact on Europe.  S2S variations:

• Predictive skill (varying levels depending on lead-time and geography)
• Relevant to risk-management in energy (e.g., trading, maintenance, security of supply, scheduling).

u 3-year research programme within S2S4E across 5 European research institutions
• S2S forecast assessment, skill enhancement and use-cases (S2S4E Deliverables 4.1-4.4 + publications/datasets)

• Calibration, processing and skill assessment (see Andrea Manrique’s talk)
• Modelling impacts of climate on RE and demand (see Hannah Bloomfield’s talk)
• “Seamless” S2S forecast horizons (see Ilias Pechlivanidis’s talk)
• Pattern forecasting (see Llorenc Lledo’s talk)
• Machine learning and multi-model combination (see Paula Gonzalez’s talk)
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Here, demonstrate:

• how probabilistic S2S climate data can lead to added value in decisions made under climate uncertainty

• why quantifying risk-preferences and decisions is important for realizing forecast “value”



Adding value: energy futures trading
u Forwards and futures

• Ahead-of-time contracts for management of price or volume risk in energy markets
• Example: weekly blocks of baseload generation at a fixed price, sold weeks in advance
• Here: purely financial trades (no transfer of underlying physical asset)

u Need price forecast 
• Fundamentals-based price model
• Converts subseasonal weather forecast è subseasonal price forecast
• Many approximations and assumptions, but…
• … added value if trades using forecast better anticipate price N-weeks in advance, compared to the “market”

Future 
contract 

price
Spot price

Contract price anticipates

Week X Week X+N

Work with James Fallon (UREAD), Michael Christoph (EnBW), and S2S4E collaborators 
With support from the UREAD Energy-Met research group (Hannah Bloomfield, Paula Gonzalez, David Livings)
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Decision modelling
u Enter N-weeks-ahead futures contract then hold until delivery. 

u What is added value of trading on the prices predicted by S2S forecasts compared to the market’s expectation?

u Simplest case using ensemble-mean price forecast – equivalent to, e.g.:
• If S2S forecast ensemble-average suggests future market price is undervalued (forecast price > market price) then
• buy contract for power at market price N-weeks-ahead, then sell contract at the day-ahead spot price

u Many more advanced variants possible!

Close contract:
SELL at new price

Forecast price 
> market price BUY

Forecast price
< market price SELL

Close contract:
BUY at new price

Gain if sign 
of the price 
difference 
correctly 

forecasted

Forecast price N 
weeks ahead.

Time = Week X Time = Week X+N



The “total” value of S2S forecasts
u Applied to German market assumed to have no access to meteorological 

forecasts (market has historic data only)

u Significant value add (c.f., nominal unit price ~€40/MWh)
• Perfect foresight: €10/MWh
• Subseasonal week-2 forecast (days 11-18): €3/MWh

u Caveats:
• Trades every week: not every individual trade “wins”
• Perfect model assumption (predicts simulated prices which exclusively 

depend on weather)
• Market access to forecasts (much of the value “priced in”)



The added value of probabilistic info
u Adjust decision model, trade only if:

• >45% chance in upper/lower tercile
• <20% chance in opposing tercile

u Per-trade value add (c.f., the equivalent ensemble-mean trader)
• Perfect foresight:  ~25% improvement
• Subseasonal week-2 forecast (days 11-18): ~20-30% improvement

u Caveats (as previous but now also):
• Trades only on strong signals è many fewer trades made
• Cumulative value over time less than “ensemble mean” strategy
• Best strategy depends on risk/return preferences

Fraction of possible trades made (%)
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Value is in the eye of the beholder…

… it depends on what the user wants to achieve.



Implicit risk preferences
u Case study thinking:

• “Would a (past) forecast have provided ‘useful information’ to 
users?”

u Assessment is subjective but often based on some of:
• Mean shift: What was the 50th centile of forecast distribution?
• Direction: Was there a clearly dominant tercile?
• Extremes: Did any single ensemble member capture an extreme 

event?
• If ”yes”, then forecast said to be “potentially useful” in this case
• i.e., user would have known to take an “action” if they’d had 

access to the forecast

u … but these :
• Imply a view of risk preferences and mission objectives
• è form an (implicit) decision model!

Figure: Bloomfield et al (submitted to ESSD)
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Meteorologists, in seeking (or being asked) to provide “yes”/”no” forecasts, are implicitly 
applying some form of decision model …

... which may not align with the user’s risk preferences.

Need for better:
• Elicitation of user risk preferences and decision-making (with probabilistic thinking!)
• Quantitative modelling/understanding of forecast value in “decision” space



Strategic vs. operational
UK telecoms (not S2S4E, this work co-funded by BT): 

u Weather driven fault rates on fixed-line infrastructure: roughly speaking, faults increase when it rains lots

u Need to fix faults quickly: secure additional maintenance resource if required but with ~1-2 weeks notice (è forecast needed)

Pattern-based method using ECMWF forecast.  Skill translates to potential value in:
• Improve performance for a given staffing cost (fewer operational failures)
• Reduce staffing costs for a given performance level (lower long term costs)
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Summary
u Demonstrated translation of subseasonal forecast skill into potential “value” for trading 

• Perfect model experiment suggests ~several %  improvement over historic information only
• Use of probabilistic information offers substantial per-trade improvements over ensemble-average
• Caveat: limitations à difficult to replicate in short, noisy “real” price data with other external drivers
• See posters & talks by James Fallon, Paula Gonzalez and Hannah Bloomfield

u The decision matters... 
• Explicit modelling of decision ”converts” complex probabilistic forecasts to simple deterministic outcomes
• The user (decision-maker) is the expert, not the meteorologist (beware implicit decision modelling)
• Suggests need for decision makers to engage with probabilistic nature of climate risk:

• What choices and actions can be taken?
• Explicit identification of attitudes to “objectives”, “risk”, and “return”.

u Resources to explore S2S forecasts in energy applications: S2S4E research datasets (national wind, demand, solar)
• https://research.reading.ac.uk/met-energy/data

Bloomfield et al, 2020 S2S4E DST

Research datasets for “energy indicators” (demand, wind, solar):
• Historic observed + ensemble subseasonal forecasts

https://research.reading.ac.uk/met-energy/data
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Thank you
Get in touch for more 

information!

Public reports of the project will be available for download on the S2S4E 
website: www.s2s4e.eu

Project coordinator: Albert Soret, Barcelona Supercomputing
Center (BSC)
Contact us: s2s4e@bsc.es

Follow us on Twitter, LinkedIn & Facebook!
@s2s4e
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