CLIMATE CHANGE IMPACTS ON THE ENERGY SYSTEM UNDER THE FOSSIL FUEL CURSE

Ekaterina Fedotova*

Moscow Power Engineering Institute

*With a big thanks to J.Kozlova, S.Krasheninnikow, and the whole GEPL-team

ek.v.fedotova@gmail.com @ekatef CC-BY-SA-4.0 | © Ekaterina Fedotova

BACKGROUND

Technical physics + data science

Area of interest: research of power and heat supply technologies [transfer processes in a solid oxide fuel cell, thermal modelling of (SOFC + thermal power) units]

Subject of the study: national energy system under the climate change

MOTIVATION

- 1. Adaptation knowledge is still limited
- 2. Energy transformation processes are quite long-termed
- 3. **Need for renovations**/innovations in power industry is evident
- 4. Trying to get advantages of a **traditional system approach**

Is there a way to put decarbonising steps among adaptation measures?

PROBLEMS CONSIDERED

- 1. Heating/cooling demand
- 2. Thermal efficiency deterioration
- 3. Renewables potential
- 4. Cogeneration
- 5. Electricity load
- 6. Reliability assessment
- 7. Renewables integration

Integral effects

"Typical-day" effects

Operating mode effects

- 1. Heating/cooling demand
- 2. Thermal efficiency deterioration
- 3. Renewables potential

Effect of the climate change on

► the national **energy balance**

and

► an overall **renewables potential**

- 1. Heating/cooling demand
- 2. Thermal efficiency deterioration

Climate modelling

Carbon box model + Regression model

*Comparison with General Climate Models projections (CMIP5 simulations data, RCP2.6 & RCP4.5 scenarios)

Energy modelling

Heating/cooling degrees-days concept

Integral of the heat/cold deficit throughout the year

Energy modelling

- Heating/cooling degrees-days concept
- Technical characteristics of industrial gas turbines

Energy modelling

- Heating/cooling degrees-days concept
- Technical characteristics of industrial gas turbines
- Implementation of the condenser
 model* representing two-phase heat
 transfer in the steam power unit circuit

*Available via github: @ekatef energy-VulnPowInd

Heating demand has decreased significantly

MPEI GEPLab

11

Rather minor effect on the annual cooling demand

MPEI GEPLab

Steam turbines are impacted noticeably

Power drop of the steam turbines operating on thermal power plants to 2050

Renewables potential (hydropower and wind)

Assess the **sign** and an **order of magnitude** of the climate change impact

Energy modelling

Technical characteristics of industrial power plants

Renewables potential (hydropower and wind)

Assess the **sign** and an **order of magnitude** of the climate change impact

Climate modelling

Ensemble estimations based on the General Climate Models projections (CMIP5 simulations data, RCP2.6 & RCP4.5 scenarios)

+

Models discrimination

Projections of the relative change of the annual average wind speed to 2050 (optimistic climate scenario RCP2.6)

MPEI GEPLab

Some **increase in runoff and improve conditions** of the hydropower operation across Russia is likely, **except for the most southern regions**.

A tendency to **wind speed decrease** in the European part of the country and in the southern part of West Siberia may be concluded with a certain confidence. The robust finding for the wind speed is the increasing trend in Primorye region.

- The power drop of the steam turbines* and gas turbines** is quite noticeable
- A space heating demand decrease clearly dominates the climate change impact of the national energy balance
- The climate change seem to be quite safe in terms of an impact on the renewable potential

* 0.2..0.3 and 0.4..0.6 percent points per 1°C for the thermal and nuclear power plants respectively

**0.1 percent points per 1°C

- 1. Cogeneration
- 2. Electricity load

What adaptation challenges are the "united" power systems likely to face?

Cogeneration

Centralised structure of the power systems

Focus on the stations observation records

Climate modelling

Assessment of the probability distribution functions for the past

+

Morphing approach for the future

Cogeneration

-20

Energy modelling

Engineering-level model of the thermal power plant

- ► Heat and mass transfer
- Design of the plant elements
- Technical characteristics of the real power equipment

Climate data

open energy modelling initiative

Cogeneration

Decrease of the heating demand means a considerable CHPs' efficiency drop

CHPs' efficiency drop per 1°C annual warming

Electricity load

Dependence of the electricity demand on the daily ambient air temperature in the South energy system (5-days moving average filter applied)

Mean 10-years (T_m) and threshold (T_h) daily ambient air temperature of the warm period

Power system	T _m , deg. C	T _h ,	Years used in T _h
		deg. C	estimation
Noth-West	13.9	_	_
Center	18.1	20	2010, 2013, 2016, 2018
Middle Volga	18.3	21	2010, 2012, 2013, 2016
South	23.6	20	2009-2018
Urals	18.5	22	2012, 2015, 2016
Siberia	15.8	_	_
East	15.5	_	_

Electricity load

Center

The annual profiles of the dimensionless diurnal electricity demand amplitude

MPEI GEPLab

Electricity load

Electricity load

- Electricity load patterns are changing both on the large (annual) and short (daily) time scales
- A part of these changes is very likely associated with the climate change

"TYPICAL-DAY" EFFECTS: SUMMARY

- Winter climate change is still resulting in an efficiency decrease of the cogeneration use
- Summer changes might result in reliability problems

Energy systems modelling is needed urgently

OPERATING MODE EFFECTS

- 1. Electricity load
- 2. Reliability assessment
- 3. Renewables integration

Climate modelling

Gridded datasets of good quality are essential

Energy modelling

Energy system models

THANK YOU FOR YOUR ATTENTION!

Any questions?

@ekatef (github/gitlab/SO)

e.v.kasilova@gmail.com ek.v.fedotova@gmail.com

Except where otherwise noted, this work and its contents (texts and illustrations) are licensed under the Attribution 4.0 International (CC-BY-SA-4.0) | © Ekaterina Fedotova

MPEI GEPLab