

PyPSA meets BZR data

Stefan Krickl
Technische Universität München
02. Juli 2025

The Problem:

Lacking Data for my Thesis:

- "Rethinking Bidding Zones: Reviewing Clustering Techniques for Finding Uniform Price Zones in Germany"
- BZR result data without geolocation

The Solution:

Recreating the BZR for Germany with PyPSA

Why recreate and why PyPSA?

- It is reproducible, Knörr et al. 2025, in R
- No open-source, reproducible nodal-pricing models using BZR data
- Marginal prices for each bus
- Scalable for a large Network
- Active development & community
- Open TYNDP with PyPSA
- The initial plan was to first import to pandapower and then to PyPSA
 - Problems arose with 3-winding Transformers and switches

The BZR Data

- Public: Results and Input data
 - Cleared Demand, Generation, Storage
 - Constraints and Welfare
 - Input for the generation and load for climate years and study year
- Not public: Network grid model
 - Under NDA
 - Data Format: CGMES
 - Hierarchical, structured data model

Model Construction and Optimisation

The Problem:

The Solution:

Only 6 SubGeograpical Regions

Kindly ask ENTSO-E for more Data

Model Construction and Optimisation

The Problems:

- Only 6 SubGeograpical Regions
- ENTSO-E declined on security grounds

The Solutions:

- Kindly ask ENTSO-E for more Data
- Reading the data and some creative thinking
 - Some Substations in the BZR data have human readable names
 - The exact line length between the substations is variable
 - OSM and openInfraMap provides geographical data
 - A bit of code and manual work leads to 834 localised substations

Grid Topology

- 2543 AC Lines
- 26 HVDC Lines
 - o 2 GW capacity
- Switchgear
 - 584 Breakers
 - 494 Disconnectors
- 4 Series Compensators
- Transformers
 - 191 3-winding
 - 573 2-winding

Loads

- 1444 Loads
- Peak active Power demand 76.2 GW

Generation

- 4 Thermal Categories
 - o 60.4 GW
- 773 Photovoltaic 74.26 GW
- 769 Biomass 7.61 GW
- 22 Non-Biogenic Waste
 0.5 GW
- 25 Offshore Wind 23.58 GW
- 653 Onshore Wind 66.77 GW

Conclusio

- Using the model I optimised 155 days of the 168 days under consideration
- The model made it possible to solve for the entire year 2024 using the data from the transparency platform
 - This is contrary to the Main Report (April 2025), where the outdated input data is acknowledged.
- The lack of transparency from ENTSO-E made it necessary to include assumptions into the model
- Seeing as critical data is already accessible publicly, rethinking the approach of sharing data with researchers is necessary

Thank you for your attention!

For follow-up questions please contact me via the Forum!