Battery modeling requirements for stationary storage systems

Daniel Kucevic
Technical University of Munich
Department of Electrical and Computer Engineering
Institute for Electrical Energy Storage Technology
openmod workshop, 22 May 2019
Introduction

Who I am?

Daniel Kucevic
Technical University of Munich
Department of Electrical and Computer Engineering
Institute for Electrical Energy Storage Technology

Masterthesis: Capacity increase of a medium voltage urban grid by meshing (@SWM)

Introduction
Introduction

Efficiency & 2nd life

Modelling & Grid-simulation

Optimization & Multi-Use

Forschungsprojekt EffSkalBatt

open_BEA

Storage LINK
Motivation

- SimSES is a modular open-source simulation framework that allows a technical and economic analysis of stationary storage systems.

- Conversion to Python → open-source

- As part of the research project open_BEA, a grid model will be coupled with SimSES
SimSES (Simulation of stationary energy storage systems) is a modular open-source simulation framework and available via: www.simses.org
Motivation

- **Service duration/discharge duration**
 - **Microgrid/island-grid support (multi-use)**
 - **Residential PV-home storage**
 - **UPS**
 - **Power quality**
 - **Peak shaving**
 - **Ramping**
 - **EV fast charging**
 - **Arbitrage**
 - **TCR**
 - **SCR**

- **Typical energy demand in applications**
 - **PCR**
 - **UPs**
 - **EV fast charging**

- **Seasonal Storage**
Structure Simulation software SimSES

Transformer
- Based on investigations on a 1.4 MW / 1.2 MWh storage at the TUM campus in Garching
- Alternative: literature values / data sheet information

Power electronics
- Simple / Modular
- Investigations on two stationary storage systems
- Alternative: literature values / data sheet information

Source: SmartPower
Structure Simulation software SimSES

Battery Model
- equivalent circuit model (OCV + R_i)
- Temperature-dependent resistance
- 1D thermal model

Aging Model
- Superposition Cyclic + Cal. Alterung

Battery cells
- LFP Sony US26650
- NMC Molicel IHR18650A
- (NCA Panasonic NCR18650PD)
- (All-Vanadium RFB)
- Alternative: literature values / data sheet information
Structure Simulationsoftware SimSES

Inputprofiles
- Frequency 2012 – 2018
- PV-Profiles TUM
- Economic data
 - FCR prices
 - IDM prices
 - (FRR profile 2017-2018)

Loadprofiles
- ~150 Household loadprofiles
- ~ 50 Industryprofiles
- Charging behavior for E-mobility
Simulationsoftware SimSES
Battery modeling requirements for stationary storage systems

• Why I'm here?
Why I'm here?

- **How much can we go into the modeling of the battery in detail, that remains useable for other tools in the energy sector?**

 - Is aging a factor that is relevant to your tool/purpose?

 - Is variable efficiency a factor that is relevant to your tool/purpose?

 - What time resolution is relevant to your purpose?

 - Which applications are relevant for you?

- SimSES2Python - Betatest? (Friday - running and testing open-source models)
Abstraction level battery modeling

OCV curve dependent on SOC, (Temp)
R_i dependent on SOC, Temp and Current
Is aging a factor that is relevant to your tool/purpose?

- **Now**: Semi empirical models

- **Options**:
 - Fixed aging (10 years)
 - Linear aging
 - Simplified Models (1 year 95 %, 2 years 90 %, …)
 - Noaging
 - Data sheet specifications
 - Physiochemical models

Source: PhD Thesis Naumann, Maik
Is efficiency a factor that is relevant to your tool/purpose?

- **Now**: Detailed efficiency curves for battery cell and power electronics unit
- **Options**:
 - Fixed efficiency for the whole system
 - Fixed efficiency for each component
 - Simplified Models (1 year 95 %, 2 years 90 %, …)
 - No Efficiency
 - Data sheet specifications
Now: Depending on the use-case we simulate with a time resolution of 1s to 15m
Which applications are relevant for you?

- Microgrid / island-grid support (multi-use)
- Residential PV-home storage
- Seasonal Storage
- UPS
- Power quality
- Peak shaving
- Ramping
- EV fast charging
- Arbitrage
- TCR
- SCR
- PCR

Typical energy demand in applications:

- <10^-4 kWh
- 10^-2 kWh
- 1 kWh
- 1 MWh
- 1 GWh

Time scales:

- <10^-4 s
- 1 ms
- 10^-2 s
- 1 s
- 10^0 min
- 1 min
- 10^2 h
- 1 h
- 10^4 d
- 1 day
- 1 week
- 1 month
- >10^6 month
Vielen Dank | Thank you | Tak

Daniel Kucevic, M.Sc.

Technical University of Munich
Institute for Electrical Energy Storage Technology

Tel.: +49 (0) 89 / 289 – 26986
E-Mail: daniel.kucevic@tum.de
Visitor address: Karlstraße 45, 80333 München
Postal address: Arcisstraße 21, 80333 München
Homepage: http://www.ees.ei.tum.de/en/

open_BEA
(FKZ: 03ET4072)

Gefördert durch:
Bundesministerium für Wirtschaft und Energie
aufgrund eines Beschlusses des Deutschen Bundestages

ZAE BAYERN
REINER LEMOINE INSTITUT